A geometric optimization method for the trajectory planning of flexible manipulators

Lightweight and flexible robots offer an interesting answer to industrial needs for safety and efficiency. The control of such systems should be able to deal properly with the flexible behavior in the links and the joints. In this paper, a feedforward control action is computed by solving the inverse dynamics of the system. Flexibility in the system is modeled using finite elements formulated in the local frame. The inverse problem is then solved using a constrained optimization formulation. This local frame representation reduces the nonlinearity in the equations of motion and improves the convergence of the numerical scheme. To illustrate the method, numerical examples of a serial and a parallel 3D robot are shown.

[1]  Olivier Bruls,et al.  Trajectory planning of soft link robots with improved intrinsic safety , 2017 .

[2]  C. Bottasso,et al.  On the Solution of Inverse Dynamics and Trajectory Optimization Problems for Multibody Systems , 2004 .

[3]  Valentin Sonneville,et al.  A geometric local frame approach for flexible multibody systems , 2015 .

[4]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[5]  W. Blajer,et al.  A Geometric Approach to Solving Problems of Control Constraints: Theory and a DAE Framework , 2004 .

[6]  Olivier Bruls,et al.  Geometrically exact beam finite element formulated on the special Euclidean group SE(3) , 2014 .

[7]  Dong-Soo Kwon,et al.  A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator , 1994 .

[8]  Stig Moberg,et al.  Modeling and Control of Flexible Manipulators , 2007 .

[9]  Peter Eberhard,et al.  Design of Feed-Forward Control for Underactuated Multibody Systems with Kinematic Redundancy , 2009 .

[10]  M. Diehl,et al.  On the integration of singularity-free representations of $$\varvec{SO(3)}$$SO(3) for direct optimal control , 2017 .

[11]  Jorge Martins,et al.  Modeling of Flexible Beams for Robotic Manipulators , 2002 .

[12]  Olivier Bruls,et al.  Two Lie Group Formulations for Dynamic Multibody Systems With Large Rotations , 2011 .

[13]  Juan Fernando,et al.  Modeling and Tip Position Control of a Flexible Link Robot: Experimental Results Modelación y Control de Posición del Extremo de un Robot de Eslabón Flexible: Resultados Experimentales , 2009 .

[14]  Olivier A. Bauchau,et al.  Flexible multibody dynamics , 2010 .

[15]  Olivier Bruls,et al.  A formulation on the special Euclidean group for dynamic analysis of multibody systems , 2014 .

[16]  Stig Moberg,et al.  Inverse Dynamics of Flexible Manipulators , 2009 .

[17]  T. Bertram,et al.  Input shaping and strain gauge feedback vibration control of an elastic robotic arm , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[18]  O. Brüls,et al.  Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach , 2013 .

[19]  W. Book Recursive Lagrangian Dynamics of Flexible Manipulator Arms , 1984 .

[20]  Robert Seifried,et al.  Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design , 2013 .

[21]  Kevin M. Lynch,et al.  Modern Robotics: Mechanics, Planning, and Control , 2017 .

[22]  Hubert Gattringer,et al.  Passivity-Based Tracking Control of a Flexible Link Robot , 2013 .

[23]  Jörn Malzahn,et al.  Vibration control of a multi-link flexible robot arm with Fiber-Bragg-Grating sensors , 2009, 2009 IEEE International Conference on Robotics and Automation.

[24]  Olivier Bruls,et al.  Analysis of stable model inversion methods for constrained underactuated mechanical systems , 2017 .

[25]  Olivier Bruls,et al.  Lie group generalized-α time integration of constrained flexible multibody systems , 2012 .

[26]  Olivier Bruls,et al.  A Stable Inversion Method for Feedforward Control of Constrained Flexible Multibody Systems , 2014 .

[27]  C. Bottasso,et al.  Optimal Control of Multibody Systems Using an Energy Preserving Direct Transcription Method , 2004 .

[28]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[29]  Alessandro De Luca Feedforward/Feedback Laws for the Control of Flexible Robots , 2000, ICRA.

[30]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[31]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[32]  B. Paden,et al.  Nonlinear inversion-based output tracking , 1996, IEEE Trans. Autom. Control..

[33]  Guaraci Guimaraes Bastos Junior Contribution to the Inverse Dynamics of Flexible Manipulators , 2013 .

[34]  R. H. Cannon,et al.  Initial Experiments on the End-Point Control of a Flexible One-Link Robot , 1984 .