Materials discovery and design using machine learning

[1]  A. Choudhary,et al.  Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science , 2016 .

[2]  Ankit Agrawal,et al.  Context Aware Machine Learning Approaches for Modeling Elastic Localization in Three-Dimensional Composite Microstructures , 2017, Integrating Materials and Manufacturing Innovation.

[3]  Mingpu Wang,et al.  Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials , 2008 .

[4]  Yoram Reich,et al.  Machine learning of material behaviour knowledge from empirical data , 1995 .

[5]  Concha Bielza,et al.  Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.

[6]  Walter Kob,et al.  A genetic algorithm for the atomistic design and global optimisation of substitutionally disordered materials , 2008, 0809.1613.

[7]  Xi Chen,et al.  A neural network approach to prediction of glass transition temperature of polymers , 2008, Int. J. Intell. Syst..

[8]  Frédéric Clerc,et al.  Virtual screening of materials using neuro-genetic approach : Concepts and implementation , 2009 .

[9]  Ana Okariz,et al.  Use of decision tree models based on evolutionary algorithms for the morphological classification of reinforcing nano-particle aggregates , 2014 .

[10]  Klaus-Robert Müller,et al.  Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. , 2013, Journal of chemical theory and computation.

[11]  Maysam F. Abbod,et al.  Physically based and neuro-fuzzy hybrid modelling of thermomechanical processing of aluminium alloys , 2002 .

[12]  Mark S. Drew,et al.  Improved machine learning for image category recognition by local color constancy , 2010, 2010 IEEE International Conference on Image Processing.

[13]  I. Foster,et al.  The Materials Data Facility: Data Services to Advance Materials Science Research , 2016, JOM.

[14]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[15]  D. T. Lee,et al.  State-of-Charge Estimation for Electric Scooters by Using Learning Mechanisms , 2007, IEEE Transactions on Vehicular Technology.

[16]  Ta-Peng Chang,et al.  Estimation of exposed temperature for fire-damaged concrete using support vector machine , 2009 .

[17]  Thomas E. Potok,et al.  A bridge for accelerating materials by design , 2015 .

[18]  H. V. Jagadish,et al.  The Materials Commons: A Collaboration Platform and Information Repository for the Global Materials Community , 2016 .

[19]  Ichiro Terasaki,et al.  Design and discovery of materials guided by theory and computation , 2015 .

[20]  J. Hutchinson Determination of the glass transition temperature , 2009 .

[21]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[22]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[23]  Jun‐Fang Pei,et al.  Modeling and Predicting the Glass Transition Temperature of Polymethacrylates Based on Quantum Chemical Descriptors by Using Hybrid PSO‐SVR , 2013 .

[24]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[25]  Mohamed Othman,et al.  A Naïve-Bayes classifier for damage detection in engineering materials , 2007 .

[26]  Maysam F. Abbod,et al.  Hybrid modelling of aluminium–magnesium alloys during thermomechanical processing in terms of physically-based, neuro-fuzzy and finite element models , 2003 .

[27]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[28]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[29]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[30]  Tom K Woo,et al.  Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture. , 2014, The journal of physical chemistry letters.

[31]  Göran Lindbergh,et al.  A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation , 2014 .

[32]  João Aires-de-Sousa,et al.  Exploration of quantitative structure–property relationships (QSPR) for the design of new guanidinium ionic liquids , 2008 .

[33]  Nicholas Zabaras,et al.  Classification and reconstruction of three-dimensional microstructures using support vector machines , 2005 .

[34]  M. Prabhakar,et al.  Analysis of workability behavior of Al–SiC P/M composites using backpropagation neural network model and statistical technique , 2009 .

[35]  Pascal Mougin,et al.  Prediction of Density and Viscosity of Biofuel Compounds Using Machine Learning Methods , 2012 .

[36]  Kristof T. Schütt,et al.  How to represent crystal structures for machine learning: Towards fast prediction of electronic properties , 2013, 1307.1266.

[37]  Tae-Sun Choi,et al.  Predicting lattice constant of complex cubic perovskites using computational intelligence , 2011 .

[38]  S. Ong,et al.  New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships , 2016 .

[39]  Alok Choudhary,et al.  A predictive machine learning approach for microstructure optimization and materials design , 2015, Scientific Reports.

[40]  Haiying Wang,et al.  New Method for Estimation Modeling of SOC of Battery , 2009, 2009 WRI World Congress on Software Engineering.

[41]  P. V. Coveney,et al.  Prediction of the functional properties of ceramic materials from composition using artificial neural networks , 2007 .

[42]  K. Fujimura,et al.  Accelerated Materials Design of Lithium Superionic Conductors Based on First‐Principles Calculations and Machine Learning Algorithms , 2013 .

[43]  İlker Bekir Topçu,et al.  Prediction of properties of waste AAC aggregate concrete using artificial neural network , 2007 .

[44]  Anubhav Jain,et al.  From the computer to the laboratory: materials discovery and design using first-principles calculations , 2012, Journal of Materials Science.

[45]  Asifullah Khan,et al.  Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression , 2010 .

[46]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[47]  Z. Guo,et al.  Modelling beta transus temperature of titanium alloys using artificial neural network , 2005 .

[48]  Cormac Toher,et al.  Universal fragment descriptors for predicting properties of inorganic crystals , 2016, Nature Communications.

[49]  P M Woodward,et al.  Prediction of the crystal structures of perovskites using the software program SPuDS. , 2001, Acta crystallographica. Section B, Structural science.

[50]  Chartchalerm Isarankura-Na-Ayudhya,et al.  A practical overview of quantitative structure-activity relationship , 2009 .

[51]  C. Camacho-Zuñiga,et al.  A New Group Contribution Scheme To Estimate the Glass Transition Temperature for Polymers and Diluents , 2003 .

[52]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[53]  Alok Choudhary,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016 .

[54]  Christian W. Omlin,et al.  Rule extraction from recurrent neural networks using a symbolic machine learning algorithm , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[55]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[56]  G. Beran,et al.  A new era for ab initio molecular crystal lattice energy prediction. , 2014, Angewandte Chemie.

[57]  Christopher M Wolverton,et al.  Atomistic calculations and materials informatics: A review , 2017 .

[58]  O. Kisi,et al.  Predicting the compressive strength of steel fiber added lightweight concrete using neural network , 2008 .

[59]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[60]  A group contribution method for estimation of glass transition temperature ionic liquids , 2012 .

[61]  C. Cai,et al.  MODELING AND PREDICTING THE GLASS TRANSITION TEMPERATURE OF VINYL POLYMERS BY USING HYBRID PSO-SVR METHOD , 2013 .

[62]  Abdul Majid,et al.  Lattice constant prediction of orthorhombic ABO3 perovskites using support vector machines , 2007 .

[63]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[64]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[65]  David L. McDowell,et al.  Vision for Data and Informatics in the Future Materials Innovation Ecosystem , 2016, JOM.

[66]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[67]  K. Binder,et al.  The Monte Carlo Method in Condensed Matter Physics , 1992 .

[68]  Bofeng Zhang,et al.  Extraction of if-then rules from trained neural network and its application to earthquake prediction , 2004 .

[69]  Ruijuan Xiao,et al.  Quantitative structure-property relationship study of cathode volume changes in lithium ion batteries using ab-initio and partial least squares analysis , 2017 .

[70]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[71]  Mohammad Farrokhi,et al.  State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF , 2010, IEEE Transactions on Industrial Electronics.

[72]  P. Cavaliere,et al.  Flow curve prediction of an Al-MMC under hot working conditions using neural networks , 2007 .

[73]  R. Edwin Raj,et al.  Prediction of compressive properties of closed-cell aluminum foam using artificial neural network , 2008 .

[74]  M. Rupp,et al.  Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties , 2013, 1307.2918.

[75]  Yuanfei Han,et al.  Prediction of the mechanical properties of forged Ti–10V–2Fe–3Al titanium alloy using FNN , 2011 .

[76]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[77]  Carolyn L. Phillips,et al.  Discovering crystals using shape matching and machine learning , 2013 .

[78]  Abhijit Mukherjee,et al.  Artificial neural networks for predicting the macromechanical behaviour of ceramic-matrix composites , 1996 .

[79]  Alán Aspuru-Guzik,et al.  Machine learning exciton dynamics , 2015, Chemical science.

[80]  W. Chunmei,et al.  Prediction of lattice constant in perovskites of GdFeO3 structure , 2003 .

[81]  David A. Winkler,et al.  Capturing the Crystal: Prediction of Enthalpy of Sublimation, Crystal Lattice Energy, and Melting Points of Organic Compounds , 2013, J. Chem. Inf. Model..

[82]  Shaomin Wu,et al.  A review on coarse warranty data and analysis , 2013, Reliab. Eng. Syst. Saf..

[83]  Christian Fleischer,et al.  Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries , 2013 .

[84]  Sanguthevar Rajasekaran,et al.  Accelerating materials property predictions using machine learning , 2013, Scientific Reports.

[85]  Jay L. Devore,et al.  Introduction to Statistics and Data Analysis , 2000 .

[86]  B. Meredig,et al.  Materials science with large-scale data and informatics: Unlocking new opportunities , 2016 .

[87]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[88]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[89]  Min Song,et al.  An approach for the aging process optimization of Al–Zn–Mg–Cu series alloys , 2009 .

[90]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[91]  Siqi Shi,et al.  Multi-scale computation methods: Their applications in lithium-ion battery research and development , 2016 .

[92]  Ekin D. Cubuk,et al.  Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials , 2017 .

[93]  Alok Choudhary,et al.  Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .

[94]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[95]  Alessio Micheli,et al.  Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks. , 2009, Journal of molecular graphics & modelling.

[96]  Su Qiang,et al.  Two semi-empirical approaches for the prediction of oxide ionic conductivities in ABO3 perovskites , 2009 .

[97]  Fredrik Olsson,et al.  A literature survey of active machine learning in the context of natural language processing , 2009 .

[98]  Saban Eren,et al.  Implementation and comparison of machine learning classifiers for information security risk analysis of a human resources department , 2010, 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM).

[99]  John Mylopoulos,et al.  From object-oriented to goal-oriented requirements analysis , 1999, CACM.

[100]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[101]  J. Maddox Crystals from first principles , 1988, Nature.

[102]  B. Yi,et al.  PREDICTION OF THE GLASS TRANSITION TEMPERATURES FOR POLYMERS WITH ARTIFICIAL NEURAL NETWORK , 2008 .

[103]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[104]  Tim Mueller,et al.  Machine Learning in Materials Science , 2016 .

[105]  Ahmad Alzghoul,et al.  Experimental and Computational Prediction of Glass Transition Temperature of Drugs , 2014, J. Chem. Inf. Model..

[106]  Zhi-Hua Zhou,et al.  Rule extraction: Using neural networks or for neural networks? , 2004, Journal of Computer Science and Technology.

[107]  Corey Oses,et al.  High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites , 2016, 1606.03279.

[108]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[109]  G. De’ath,et al.  CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS , 2000 .

[110]  N. Castin,et al.  Predicting vacancy migration energies in lattice-free environments using artificial neural networks , 2014 .

[111]  Bryce Meredig,et al.  Robust FCC solute diffusion predictions from ab-initio machine learning methods , 2017, 1705.08798.

[112]  Stefano Curtarolo,et al.  Data-Mining-Driven Quantum Mechanics for the Prediction of Structure , 2006 .

[113]  James Theiler,et al.  Materials Prediction via Classification Learning , 2015, Scientific Reports.

[114]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[115]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[116]  Xin-An Feng,et al.  Material selection using an improved Genetic Algorithm for material design of components made of a multiphase material , 2008 .

[117]  Lei Yang,et al.  Studying the Explanatory Capacity of Artificial Neural Networks for Understanding Environmental Chemical Quantitative Structure-Activity Relationship Models , 2005, J. Chem. Inf. Model..

[118]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project. Large-scale computational screening and design of molecular motifs for organic photovoltaics on the World Community Grid , 2011 .

[119]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[120]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[121]  Manh Cuong Nguyen,et al.  On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets , 2014, Scientific Reports.

[122]  G. B. Olson,et al.  Designing a New Material World , 2000, Science.

[123]  T. Sadowski,et al.  Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating Artificial Neural Networks and Finite Element Method , 2014 .

[124]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[125]  Ankit Agrawal,et al.  Machine learning approaches for elastic localization linkages in high-contrast composite materials , 2015, Integrating Materials and Manufacturing Innovation.

[126]  Luc De Raedt,et al.  Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds , 2004, J. Chem. Inf. Model..

[127]  W. M. Bolstad Introduction to Bayesian Statistics , 2004 .

[128]  Yiyu Cheng,et al.  Machine learning techniques for the prediction of the peptide mobility in capillary zone electrophoresis. , 2007, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[129]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[130]  I. Steinbach Phase-field models in materials science , 2009 .

[131]  Guo Jin,et al.  Some regularities of melting points of AB-type intermetallic compounds , 1996 .

[132]  Roy L. Johnston,et al.  Genetic algorithms: A universal tool for solving computational tasks in Materials Science , 2009 .

[133]  Tom M. Mitchell,et al.  Machine Learning and Data Mining , 2012 .

[134]  Francesco Ciucci,et al.  Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12 , 2017, Scientific Reports.