Synchronization opponent networks: dynamics, computation, and coding for similarity and object recognition

[1]  Guy Wallis,et al.  Neural Mechanisms Underlying Processing in the Visual Areas of the Occipital and Temporal Lobes , 1994 .

[2]  R. Ingraham A Survey of Nonlinear Dynamics (Chaos Theory) , 1991 .

[3]  金子 邦彦 Theory and applications of coupled map lattices , 1993 .

[4]  Roger D. Traub,et al.  Gamma Oscillation Model Predicts Intensity Coding by Phase Rather than Frequency , 1997, Neural Computation.

[5]  Kazuyuki Aihara,et al.  Dynamical Cell Assembly Hypothesis -- Theoretical Possibility of Spatio-temporal Coding in the Cortex , 1996, Neural Networks.

[6]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[7]  S. Grossberg,et al.  How does a brain build a cognitive code? , 1980, Psychological review.

[8]  N. Swindale Is the cerebral cortex modular? , 1990, Trends in Neurosciences.

[9]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[10]  Benjamin B. Kimia,et al.  On the intrinsic reconstruction of shape from its symmetries , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[11]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[12]  I. Biederman,et al.  Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. , 1993, Journal of experimental psychology. Human perception and performance.

[13]  Walter J. Freeman,et al.  Neurodynamics: An Exploration in Mesoscopic Brain Dynamics , 2000, Perspectives in Neural Computing.

[14]  J. V. Tucker,et al.  Excitable Media as Computational Systems , 1991 .

[15]  D. Purves,et al.  Iterated patterns of brain circuitry (or how the cortex gets its spots) , 1992, Trends in Neurosciences.

[16]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[17]  Ralph Abraham,et al.  ORDER AND CHAOS IN THE TORAL LOGISTIC LATTICE , 1991 .

[18]  William R. Uttal,et al.  On seeing forms , 1988 .

[19]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[20]  Jonathan A. Stamford,et al.  Fast cyclic voltammetry: Measuring transmitter release in ‘real time’ , 1990, Journal of Neuroscience Methods.

[21]  Mingzhou Ding,et al.  Multistability and Metastability in Perceptual and Brain Dynamics , 1995 .

[22]  Michael L. Baird Structural Pattern Recognition , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[24]  Darren R. Flower,et al.  On the Properties of Bit String-Based Measures of Chemical Similarity , 1998, J. Chem. Inf. Comput. Sci..

[25]  Refractor Vision , 2000, The Lancet.

[26]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[27]  Keiji Tanaka,et al.  Representation of Visual Features of Objects in the Inferotemporal Cortex , 1996, Neural Networks.

[28]  M. Tarr Visual Pattern Recognition , 1998 .

[29]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[30]  Kaleem Siddiqi,et al.  Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Dean J. Driebe,et al.  Fully Chaotic Maps and Broken Time Symmetry , 1999 .

[32]  Hans Knutsson,et al.  Uncertainty and inference in the visual system , 1988, IEEE Trans. Syst. Man Cybern..

[33]  Patrick Brigger Morphological shape representation using the skeleton decomposition , 1996 .

[34]  Annette Dolphin Neural Codes and Distributed Representations: Foundations of Neural Computation , 2000 .

[35]  G. Palm Neural Assemblies , 1982, Studies of Brain Function.

[36]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[37]  W. Klimesch Memory processes, brain oscillations and EEG synchronization. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[38]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[39]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[40]  J. E. Skinner,et al.  Chaos and physiology: deterministic chaos in excitable cell assemblies. , 1994, Physiological reviews.

[41]  B J Richmond,et al.  Role of inferior temporal neurons in visual memory. II. Multiplying temporal waveforms related to vision and memory. , 1992, Journal of neurophysiology.

[42]  Nabil H. Farhat,et al.  Recurrent networks with recursive processing elements: paradigm for dynamical computing , 1996, Optics & Photonics.

[43]  J. Krüger,et al.  Recognizing the visual stimulus from neuronal discharges , 1991, Trends in Neurosciences.

[44]  James P. Crutchfield,et al.  Mechanisms of Emergent Computation in Cellular Automata , 1998, PPSN.

[45]  Peter Grassberger,et al.  Information and Complexity Measures in Dynamical Systems , 1991 .

[46]  W. Freeman Predictions on Neocortical Dynamics Derived from Studies in Paleocortex , 1992 .

[47]  Rui Seixas Feigenbaum networks , 1997, chao-dyn/9712004.

[48]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[49]  D. Amit The Hebbian paradigm reintegrated: Local reverberations as internal representations , 1995, Behavioral and Brain Sciences.

[50]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[51]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[52]  Tim van Gelder,et al.  Compositionality: A Connectionist Variation on a Classical Theme , 1990, Cogn. Sci..

[53]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[54]  W. Hayward Effects of outline shape in object recognition , 1998 .

[55]  N J Shah,et al.  On the relation between brain images and brain neural networks , 2000, Human brain mapping.

[56]  P. Grassberger On Symbolic Dynamics of One-Humped Maps of the Interval , 1988 .

[57]  Barak A. Pearlmutter Dynamic recurrent neural networks , 1990 .

[58]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[59]  Haim J. Wolfson,et al.  Transformation invariant indexing , 1992 .

[60]  E T Rolls,et al.  Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[61]  Masahiko Morita,et al.  Capacity of associative memory using a nonmonotonic neuron model , 1993, Neural Networks.

[62]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[63]  F. Gonzalez-Lima,et al.  Structural equation modeling and its application to network analysis in functional brain imaging , 1994 .

[64]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  C. L. T. Mannion,et al.  Coupled Oscillating Neurons , 1992, Perspectives in Neural Computing.

[66]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[67]  Paul Manneville,et al.  Coupled map lattices as cellular automata , 1989 .

[68]  B. Julesz,et al.  Perceptual sensitivity maps within globally defined visual shapes , 1994, Nature.

[69]  Melanie Mitchell,et al.  Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work , 2000 .

[70]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[71]  François Chapeau-Blondeau,et al.  Stable, oscillatory, and chaotic regimes in the dynamics of small neural networks with delay , 1992, Neural Networks.

[72]  J. Nicolis,et al.  Chaotic dynamics applied to information processing , 1986 .

[73]  Bruno A. Olshausen,et al.  Dynamic routing strategies in sensory, motor, and cognitive processing , 1994 .

[74]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[75]  S. Bressler Large-scale cortical networks and cognition , 1995, Brain Research Reviews.

[76]  Brian Scassellati,et al.  Retrieving images by 2D shape: a comparison of computation methods with human perceptual judgments , 1994, Electronic Imaging.

[77]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[78]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[79]  Nizam Omar,et al.  Scene Segmentation of the Chaotic oscillator Network , 2000, Int. J. Bifurc. Chaos.

[80]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[81]  A. Milner,et al.  Neuropsychological studies of perception and visuomotor control. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[82]  G. Edelman,et al.  The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function , 1978 .

[83]  K. Kaneko Overview of coupled map lattices. , 1992, Chaos.

[84]  E M Harth,et al.  Dynamics of neural structures. , 1970, Journal of theoretical biology.

[85]  E. Ahissar,et al.  Correlated Activity of Neurons: A Neural Code for Higher Brain Functions? , 1991 .

[86]  L. Optican,et al.  Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images, recalled images, and behavioral context. , 1992, Journal of neurophysiology.

[87]  K. Nakamura,et al.  The primate temporal pole: its putative role in object recognition and memory , 1996, Behavioural Brain Research.

[88]  M. Tovée,et al.  Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex , 1995 .

[89]  Eero P. Simoncelli Shiftable multi-scale transforms [or "What's wrong with orthonormal wavelets"] , 1992 .

[90]  A. Tversky Features of Similarity , 1977 .

[91]  A. Oosterlinck,et al.  The plastic coupled map lattice: A novel image-processing paradigm. , 1992, Chaos.

[92]  Robert A. M. Gregson,et al.  Nonlinear Psychophysical Dynamics , 1988 .

[93]  van Leeuwen C,et al.  Stability and Intermittency in Large-Scale Coupled Oscillator Models for Perceptual Segmentation , 1997, Journal of mathematical psychology.

[94]  Kunihiko Kaneko,et al.  Self-organized hierarchical structure in a plastic network of chaotic units , 2000, Neural Networks.

[95]  Stephen Wolfram,et al.  Approaches to complexity engineering , 1986 .

[96]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[97]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[98]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[100]  Walter J. Freeman,et al.  NOISE-INDUCED FIRST-ORDER PHASE TRANSITIONS IN CHAOTIC BRAIN ACTIVITY , 1999 .

[101]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[102]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[103]  Vasant Honavar,et al.  Evolutionary Design of Neural Architectures , 1995 .

[104]  Reinhard Eckhorn,et al.  Cortical Processing by Fast Synchronization: High Frequency Rhythmic and Non-rhythmic Signals in the Visual Cortex Point to General Principles of Spatiotemporal Coding , 2000 .

[105]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[106]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[107]  R. Ratcliff,et al.  Connectionist and diffusion models of reaction time. , 1999, Psychological review.

[108]  Benjamin B. Kimia,et al.  On the Local Form and Transitions of Symmetry Sets, Medial Axes, and Shocks , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[109]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[110]  J. W. Hutchinson,et al.  Nearest neighbor analysis of psychological spaces. , 1986 .

[111]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[112]  A. Aertsen,et al.  Dynamic Aspects of Neuronal Cooperativity: Fast Stimulus-Locked Modulations of Effective Connectivity , 1991 .

[113]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[114]  W. Freeman,et al.  COMPARISON OF EEG TIME SERIES FROM RAT OLFACTORY SYSTEM WITH MODEL COMPOSED OF NONLINEAR COUPLED OSCILLATORS , 1995 .

[115]  Kunihiko Kaneko,et al.  Spatiotemporal chaos in one-and two-dimensional coupled map lattices , 1989 .

[116]  K. Kaneko Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements , 1990 .

[117]  Azriel Rosenfeld,et al.  Picture languages: Formal models for picture recognition , 1979 .

[118]  D. Jameson,et al.  Mach bands : quantitative studies on neural networks in the retina , 1966 .

[119]  J. G. Taylor,et al.  Information Processing by Oscillating Neurons , 1992 .

[120]  J. Cowan Models of Large-Scale Nervous Activity , 1974 .

[121]  R. Desimone,et al.  A neural mechanism for working and recognition memory in inferior temporal cortex. , 1991, Science.

[122]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[123]  Grebogi,et al.  Efficient switching between controlled unstable periodic orbits in higher dimensional chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[124]  K Verfaillie,et al.  A corpus of 714 full-color images of depth-rotated objects , 1995, Perception & psychophysics.

[125]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[126]  W. Bialek,et al.  Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[127]  William H. Calvin Cortical columns, modules, and Hebbian cell assemblies , 1998 .

[128]  J Pardey,et al.  A review of parametric modelling techniques for EEG analysis. , 1996, Medical engineering & physics.

[129]  E M Harth,et al.  Brain functions and neural dynamics. , 1970, Journal of theoretical biology.

[130]  Alan L. Yuille,et al.  Computational theories of low-level vision , 1990 .

[131]  Guenter W. Gross,et al.  Neuronal networks with spontaneous, correlated bursting activity: Theory and simulations , 1992, Neural Networks.

[132]  Ichiro Tsuda,et al.  Dynamic link of memory--Chaotic memory map in nonequilibrium neural networks , 1992, Neural Networks.

[133]  Nikos K. Logothetis,et al.  Recognition and Representation of visual objects in primates: Psychophysics and Physiology , 1996 .

[134]  Eugene Charniak,et al.  Statistical language learning , 1997 .

[135]  Robert A. M. Gregson,et al.  Cascades and Fields in Perceptual Psychophysics , 1995 .

[136]  Christos Faloutsos,et al.  Fast and effective similarity search in medical tumor databases using morphology , 1996, Other Conferences.

[137]  Martin Hasler,et al.  On Strong and Weak Chaotic Partial Synchronization , 2000, Int. J. Bifurc. Chaos.

[138]  P. Churchland,et al.  The Mind-Brain Continuum: Sensory Processes , 1996 .

[139]  J. Krüger,et al.  Spike Train Correlations on Slow Time Scales in Monkey Visual Cortex , 1991 .

[140]  J. Wade Davis,et al.  Statistical Pattern Recognition , 2003, Technometrics.

[141]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[142]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[143]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[144]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[145]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[146]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[147]  Terry Caelli,et al.  On the discrimination of compound Gabor signals and textures , 1988, Vision Research.

[148]  T Natschläger,et al.  Spatial and temporal pattern analysis via spiking neurons. , 1998, Network.

[149]  David Mumford,et al.  Neuronal Architectures for Pattern-theoretic Problems , 1995 .

[150]  T. Bullock How do Brains Work?: Papers of a Comparative Neurophysiologist , 1993 .

[151]  Antoine Rémond,et al.  Methods of Analysis of Brain Electrical and Magnetic Signals , 1987 .

[152]  H. Kazmierczak,et al.  Image processing and pattern recognition , 1968, IFIP Congress.

[153]  Cristopher Moore,et al.  Dynamical Recognizers: Real-Time Language Recognition by Analog Computers , 1998, Theor. Comput. Sci..

[154]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[155]  Hanspeter A. Mallot,et al.  Temporal Structure of Cortical Information Processing: Cortical Architecture, Oscillations, and Non-Separability of Spatio-Temporal Receptive Field Organization , 1991 .

[156]  金子 邦彦 Collapse of tori and genesis of chaos in dissipative systems , 1986 .

[157]  Hansel,et al.  Synchronization and computation in a chaotic neural network. , 1992, Physical review letters.

[158]  Daniel J. Amit,et al.  Conversion of Temporal Correlations Between Stimuli to Spatial Correlations Between Attractors , 1999, Neural Computation.

[159]  Kisou Kubota,et al.  Unique oscillatory activity related to visual processing in the temporal pole of monkeys , 1991, Neuroscience Research.

[160]  C. Gross,et al.  Neural ensemble coding in inferior temporal cortex. , 1994, Journal of neurophysiology.

[161]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[162]  DeLiang Wang,et al.  Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators , 1996, IEEE Trans. Neural Networks.

[163]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[164]  E Harth,et al.  Alopex: a stochastic method for determining visual receptive fields. , 1974, Vision research.

[165]  W. Singer,et al.  Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties , 1992, Visual Neuroscience.

[166]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[167]  Yong Yao,et al.  Model of biological pattern recognition with spatially chaotic dynamics , 1990, Neural Networks.

[168]  J. Cohen,et al.  The role of locus coeruleus in the regulation of cognitive performance. , 1999, Science.

[169]  M. Tarr,et al.  To What Extent Do Unique Parts Influence Recognition Across Changes in Viewpoint? , 1995 .

[170]  T. Bullock,et al.  Bicoherence of intracranial EEG in sleep, wakefulness and seizures. , 1997, Electroencephalography and clinical neurophysiology.

[171]  Gordon H. Bower,et al.  Experimental methods in cognitive science , 1989 .

[172]  Frank Pasemann,et al.  SYNCHRONOUS CHAOS IN HIGH-DIMENSIONAL MODULAR NEURAL NETWORKS , 1996 .