Geometric constraints on quadratic Bézier curves using minimal length and energy

This paper derives expressions for the arc length and the bending energy of quadratic Bezier curves. The formulas are in terms of the control point coordinates. For fixed start and end points of the Bezier curve, the locus of the middle control point is analyzed for curves of fixed arc length or bending energy. In the case of arc length this locus is convex. For bending energy it is not. Given a line or a circle and fixed end points, the locus of the middle control point is determined for those curves that are tangent to a given line or circle. For line tangency, this locus is a parallel line. In the case of the circle, the locus can be classified into one of six major types. In some of these cases, the locus contains circular arcs. These results are then used to implement fast algorithms that construct quadratic Bezier curves tangent to a given line or circle, with given end points, that minimize bending energy or arc length.

[1]  Dereck S. Meek,et al.  Planar G2 transition between two circles with a fair cubic Bézier curve , 1999, Comput. Aided Des..

[2]  Dereck S. Meek,et al.  A Pythagorean hodograph quintic spiral , 1996, Comput. Aided Des..

[3]  Zbynek Sír,et al.  Hermite interpolation by hypocycloids and epicycloids with rational offsets , 2010, Comput. Aided Geom. Des..

[4]  Rida T. Farouki,et al.  Analysis of the offset to a parabola , 1995, Computer Aided Geometric Design.

[5]  Dereck S. Meek,et al.  Planar G 2 transition with a fair Pythagorean hodograph quintic curve , 2002 .

[6]  Jun-Hai Yong,et al.  Geometric Hermite curves with minimum strain energy , 2004, Comput. Aided Geom. Des..

[7]  D. Walton,et al.  A planar cubic Be´zier spiral , 1996 .

[8]  Jens Gravesen,et al.  Adaptive Subdivision and the Length and Energy of Bézier Curves , 1997, Comput. Geom..

[9]  Larry L. Schumaker,et al.  Minimal energy surfaces using parametric splines , 1996, Comput. Aided Geom. Des..

[10]  Yoo-Chul Kim,et al.  Internal energy minimization in biarc interpolation , 2009 .

[11]  Zulfiqar Habib,et al.  G 2 PH QUINTIC SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS , 2004 .

[12]  James R. Munkres,et al.  Topology; a first course , 1974 .

[13]  Zulfiqar Habib,et al.  SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS , 2004 .

[14]  Tae-wan Kim,et al.  Finding the best conic approximation to the convolution curve of two compatible conics based on Hausdorff distance , 2009, Comput. Aided Des..

[15]  Saifudin Hafiz Yahaya,et al.  Parametric Transition as a Spiral Curve and Its Application in Spur Gear Tooth with FEA , 2010 .

[16]  Young Joon Ahn,et al.  Constraint-based LN-curves , 2010, SAC '10.

[17]  Lydia E. Kavraki,et al.  Path planning for deformable linear objects , 2006, IEEE Transactions on Robotics.

[18]  Weimin Han,et al.  2. Minimal-Energy Splines with Various End Constraints , 1992, Curve and Surface Design.

[19]  J. Sánchez-Reyes,et al.  Complex rational Bézier curves , 2009, Comput. Aided Geom. Des..

[20]  Karan Singh,et al.  Sketching piecewise clothoid curves , 2008, SBM'08.

[21]  Rida T. Farouki,et al.  The elastic bending energy of Pythagorean-hodograph curves , 1996, Comput. Aided Geom. Des..

[22]  Young Joon Ahn,et al.  Curvature continuous offset approximation based on circle approximation using quadratic Bézier biarcs , 2011, Comput. Aided Des..

[23]  Robert J. Holt,et al.  Energy formulations of A-splines , 1999, Comput. Aided Geom. Des..

[24]  Zulfiqar Habib,et al.  G2 cubic transition between two circles with shape control , 2009 .

[25]  Young Joon Ahn,et al.  Approximate convolution with pairs of cubic Bézier LN curves , 2011, Comput. Aided Geom. Des..

[26]  Guido Brunnett,et al.  Interpolation with minimal-energy splines , 1994, Comput. Aided Des..

[27]  Christoph M. Hoffmann,et al.  Geometric Constraint Solving in Parametric Computer-Aided Design , 2011, J. Comput. Inf. Sci. Eng..

[28]  M. Floater Arc Length Estimation and the Convergence of Polynomial Curve Interpolation , 2005 .

[29]  Qinghua Sun,et al.  A blending interpolator with value control and minimal strain energy , 2010, Comput. Graph..

[30]  Zulfiqar Habib,et al.  On PH quintic spirals joining two circles with one circle inside the other , 2007, Comput. Aided Des..

[31]  Zulfiqar Habib,et al.  QUINTIC SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS , 2004 .