Color Edge Saliency Boosting using Natural Image Statistics

State of the art methods for image matching, content-based retrieval and recognition use local features. Most of these still exploit only the luminance information for detection. The color saliency boosting algorithm has provided an efficient method to exploit the saliency of color edges based on information theory. However, during the design of this algorithm, some issues were not addressed in depth: (1) The method has ignored the underlying distribution of derivatives in natural images. (2) The dependence of information content in color-boosted edges on its spatial derivatives has not been quantitatively established. (3) To evaluate luminance and color contributions to saliency of edges, a parameter gradually balancing both contributions is required. We introduce a novel algorithm, based on the principles of independent component analysis, which models the first order derivatives of color natural images by a generalized Gaussian distribution. Furthermore, using this probability model we show that for images with a Laplacian distribution, which is a particular case of generalized Gaussian distribution, the magnitudes of color-boosted edges reflect their corresponding information content. In order to evaluate the impact of color edge saliency in real world applications, we introduce an extension of the Laplacian-of-Gaussian detector to color, and the performance for image matching is evaluated. Our experiments show that our approach provides more discriminative regions in comparison with the original detector.

[1]  W. Geisler Visual perception and the statistical properties of natural scenes. , 2008, Annual review of psychology.

[2]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[3]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[4]  Gyuri Dorkó,et al.  Selection of Discriminative Regions and Local Descriptors for Generic Object Class Recognition. (Sélection de régions significatives locales et de leurs descripteurs pour la reconnaissance de classes génériques d'objects) , 2006 .

[5]  Jan-Mark Geusebroek,et al.  The Stochastic Structure of Images , 2005, Scale-Space.

[6]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[7]  Jan-Mark Geusebroek,et al.  Significance of the Weibull Distribution and its Sub-models in Natural Image Statistics , 2009, VISAPP.

[8]  Fahad Shahbaz Khan,et al.  Top-down color attention for object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[9]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[10]  Lars Bretzner,et al.  Real-Time Scale Selection in Hybrid Multi-scale Representations , 2003, Scale-Space.

[11]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[12]  Ramon Baldrich,et al.  Saliency of color image derivatives: a comparison between computational models and human perception. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Joost van de Weijer,et al.  Boosting color saliency in image feature detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Ghassan Hamarneh,et al.  Quaternion Color Curvature , 2008, Color Imaging Conference.

[15]  Cordelia Schmid,et al.  Pattern recognition with local invariant features , 2005 .

[16]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[17]  Joost van de Weijer,et al.  Robust photometric invariant features from the color tensor , 2006, IEEE Transactions on Image Processing.

[18]  Koen E. A. van de Sande,et al.  Color Descriptors for Object Category Recognition , 2008, CGIV/MCS.

[19]  Arnold W. M. Smeulders,et al.  c ○ 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. A Six-Stimulus Theory for Stochastic Texture , 2002 .

[20]  J. Wolfe,et al.  What attributes guide the deployment of visual attention and how do they do it? , 2004, Nature Reviews Neuroscience.

[21]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[22]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[23]  Karl R Gegenfurtner,et al.  Geometry in Nature , 1993 .

[24]  Arnold W. M. Smeulders,et al.  Fragmentation in the vision of scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[25]  Hwann-Tzong Chen,et al.  Histogram-based interest point detectors , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  K. Gegenfurtner,et al.  Cortical mechanisms of colour vision , 2003, Nature Reviews Neuroscience.

[27]  Tamal Bose,et al.  Digital Signal and Image Processing , 2003 .

[28]  Nicu Sebe,et al.  Evaluation of Intensity and Color Corner Detectors for Affine Invariant Salient Regions , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[29]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[30]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[31]  Eero P. Simoncelli Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.

[32]  J. Mollon Color vision. , 1982, Annual review of psychology.

[33]  James V. Stone Independent Component Analysis: A Tutorial Introduction , 2007 .

[34]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[35]  Krystian Mikolajczyk,et al.  Detection of local features invariant to affines transformations , 2002 .

[36]  Per-Erik Forssén,et al.  Maximally Stable Colour Regions for Recognition and Matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Azriel Rosenfeld,et al.  A Pyramid Framework for Early Vision , 1994 .

[38]  Nicu Sebe,et al.  Lonely but attractive: Sparse color salient points for object retrieval and categorization , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[39]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[41]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[42]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[43]  John K. Tsotsos,et al.  Neurobiology of Attention , 2005 .

[44]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[45]  Luc Florack A Spatio-Frequency Trade-Off Scale for Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[47]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[48]  A. Linksz Outlines of a Theory of the Light Sense. , 1965 .

[49]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.