First-principles study of electronic structure and photocatalytic properties of MnNiO3 as an alkaline oxygen-evolution photocatalyst.

We present a first-principles study of MnNiO3, a promising oxygen-evolution photocatalyst. Using density functional theory with the PBE + U functional and the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE), we compute and analyze the ground-state geometry and electronic structure. We find that MnNiO3 is a ferrimagnetic semiconductor with an indirect band gap, consistent with experimental observations. We also predict that MnNiO3 has promising band edge positions relative to the vacuum, with potential to straddle the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) redox potentials in aqueous solution. A detailed analysis of the band structure and density of states provides a clear explanation for why MnNiO3 has appropriate electronic properties for OER. Furthermore, comprehensive calculations of its Pourbaix diagram suggest that MnNiO3 is stable in alkaline solution at potentials relevant for oxygen evolution.

[1]  W. H. Cloud CRYSTAL STRUCTURE AND FERRIMAGNETISM IN NiMnO$sub 3$ AND CoMnO$sub 3$ , 1958 .

[2]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[3]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .

[4]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[5]  S. Fukuzumi,et al.  Bioinspired Photocatalytic Water Reduction and Oxidation with Earth-Abundant Metal Catalysts , 2013 .

[6]  S. Fukuzumi,et al.  Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8(2-). , 2012, Journal of the American Chemical Society.

[7]  A. Pasquarello,et al.  Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations. , 2008, Physical review letters.

[8]  Richard L. Martin,et al.  Density functional theory studies of the electronic structure of solid state actinide oxides. , 2013, Chemical reviews.

[9]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[10]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[11]  S. Hüfner,et al.  Photoemission and inverse photoemission spectroscopy of NiO , 1984 .

[12]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[13]  H. Arakawa,et al.  Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. , 2001, Chemical communications.

[14]  J. Neaton,et al.  Computational design of low-band-gap double perovskites , 2012 .

[15]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[16]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[17]  P. Westerhoff,et al.  Comparison of Different Methods for the Point of Zero Charge Determination of NiO , 2011 .

[18]  B. Beverskog,et al.  Revised Pourbaix diagrams for nickel at 25-300°C , 1997 .

[19]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[20]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[21]  Gerbrand Ceder,et al.  Efficient creation and convergence of surface slabs , 2013 .

[22]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[23]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[24]  D. Huffman,et al.  Optical Absorption Spectra of Crystal‐Field Transitions in MnO , 1969 .

[25]  J. D. Vaughan,et al.  New magnetic compounds of the ilmenite-type structure , 1958 .

[26]  S. Fukuzumi,et al.  Catalytic activity of NiMnO3 for visible light-driven and electrochemical water oxidation. , 2013, Physical chemistry chemical physics : PCCP.

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[28]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[29]  D. Mcdaniel,et al.  Concepts and Models of Inorganic Chemistry , 1965 .

[30]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[31]  C. Fennie,et al.  Band gap and edge engineering via ferroic distortion and anisotropic strain: the case of SrTiO(3). , 2011, Physical review letters.

[32]  Vladan Stevanović,et al.  Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. , 2014, Physical chemistry chemical physics : PCCP.

[33]  F. Giustino,et al.  GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Suhuai Wei,et al.  Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO 2 , 2010 .

[35]  W. Marsden I and J , 2012 .

[36]  Kristin A. Persson,et al.  Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states , 2012 .

[37]  Anthony Harriman,et al.  Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions , 1988 .

[38]  Qimin Yan,et al.  Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. , 2011, The Journal of chemical physics.

[39]  Takao Kotani,et al.  Quasiparticle self-consistent GW theory. , 2006, Physical review letters.

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.