Maximal closed loop admissible set for linear systems with non-convex polyhedral constraints

Abstract This paper deals with the computation of the maximal closed-loop admissible set for linear systems with non-convex polyhedral constraints. These constraints are modeled as the union of a finite number of convex polyhedra. An efficient algorithm for the computation of this set, based on removing subsets of the maximal closed-loop invariant set for the convex hull of the original constraints, is proposed and compared with the existing generic algorithm. Next, stability conditions for a general predictive control scheme are applied to the particular problem proposed. Finally, two examples showing the performance of the maximal admissible set algorithm are given.

[1]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[2]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[3]  James K. Kuchar,et al.  A review of conflict detection and resolution modeling methods , 2000, IEEE Trans. Intell. Transp. Syst..

[4]  Alberto Bemporad,et al.  Model Predictive Control Toolbox™ User’s Guide , 2004 .

[5]  John Lygeros,et al.  Stabilization and tracking of feedback linearizable systems under input constraints , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[6]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[7]  A. Palazoglu,et al.  Nolinear model predictive control using Hammerstein models , 1997 .

[8]  Alberto Bemporad,et al.  Stabilizing Model Predictive Control of Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[9]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[10]  Manfred Morari,et al.  Optimal complexity reduction of polyhedral piecewise affine systems , 2008, Autom..

[11]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[12]  A. Isidori Nonlinear Control Systems , 1985 .

[13]  Sirish L. Shah,et al.  Constrained nonlinear MPC using hammerstein and wiener models: PLS framework , 1998 .

[14]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[15]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[16]  E. Mosca,et al.  Nonlinear control of constrained linear systems via predictive reference management , 1997, IEEE Trans. Autom. Control..

[17]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[18]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[19]  Francesco Borrelli,et al.  Constrained Optimal Control of Linear and Hybrid Systems , 2003, IEEE Transactions on Automatic Control.

[20]  D. Mayne,et al.  Computation of invariant sets for piecewise affine discrete time systems subject to bounded disturbances , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[21]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[22]  Michael Athans,et al.  Design of feedback control systems for stable plants with saturating actuators , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[23]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[24]  A. Kurzhanski Dynamic optimization for nonlinear target control synthesis , 2004 .

[25]  F. Borrelli,et al.  Reference governor for constrained piecewise affine systems , 2009 .

[26]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..