Understanding deep convolutional networks

Deep convolutional networks provide state-of-the-art classifications and regressions results over many high-dimensional problems. We review their architecture, which scatters data with a cascade of linear filter weights and nonlinearities. A mathematical framework is introduced to analyse their properties. Computations of invariants involve multiscale contractions with wavelets, the linearization of hierarchical symmetries and sparse separations. Applications are discussed.

[1]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.

[2]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[4]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[5]  Nima Mesgarani,et al.  Discrimination of speech from nonspeech based on multiscale spectro-temporal Modulations , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[6]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  M. Glinsky A new perspective on renormalization: the scattering transformation , 2011, 1106.4369.

[8]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[9]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[10]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[11]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition , 2012 .

[12]  S. Mallat,et al.  Intermittent process analysis with scattering moments , 2013, 1311.4104.

[13]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[14]  Stéphane Mallat,et al.  Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Lorenzo Rosasco,et al.  Unsupervised learning of invariant representations with low sample complexity: the magic of sensory cortex or a new framework for machine learning? , 2014 .

[16]  Joan Bruna,et al.  Learning Stable Group Invariant Representations with Convolutional Networks , 2013, ICLR.

[17]  Joakim Andén,et al.  Deep Scattering Spectrum , 2013, IEEE Transactions on Signal Processing.

[18]  Brendan J. Frey,et al.  Deep learning of the tissue-regulated splicing code , 2014, Bioinform..

[19]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[20]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[21]  Jitendra Malik,et al.  Analyzing the Performance of Multilayer Neural Networks for Object Recognition , 2014, ECCV.

[22]  Rob Fergus,et al.  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks , 2015, NIPS.

[23]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[24]  Mathieu Aubry,et al.  Understanding Deep Features with Computer-Generated Imagery , 2015, ICCV.

[25]  Joakim Andén,et al.  Joint time-frequency scattering for audio classification , 2015, 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP).

[26]  Stéphane Mallat,et al.  Deep roto-translation scattering for object classification , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Stéphane Mallat,et al.  Quantum Energy Regression using Scattering Transforms , 2015, ArXiv.

[28]  Leon A. Gatys,et al.  Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks , 2015, ArXiv.

[29]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[30]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[32]  Enrique Alegre Gutiérrez,et al.  SIFT (Scale Invariant Feature Transform) , 2016 .

[33]  Irène Waldspurger Wavelet transform modulus : phase retrieval and scattering , 2017 .

[34]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .