DEALING WITH SPATIAL NORMALIZATION ERRORS IN fMRI GROUP INFERENCE USING HIERARCHICAL MODELING

An important challenge in neuroimaging multi-subject studies is to take into account that different brains cannot be aligned perfectly. To this end, we extend the classical mass univariate model for group analysis to incorporate uncer- tainty on localization by introducing, for each subject, a spatial "jitter" variable to be marginalized out. We derive a Bayes factor to test for the mean popula- tion effect's sign in each voxel of a search volume, and discuss a Gibbs sampler to compute it. This Bayes factor, which generalizes the classical t-statistic, may be combined with a permutation test in order to control the frequentist false positive rate. Results on both simulated and experimental data suggest that this test may outperform conventional mass univariate tests in terms of detection power, while limiting the problem of overestimating the size of activity clusters.

[1]  L. M. M.-T. Theory of Probability , 1929, Nature.

[2]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[3]  I. Good The Bayes/Non-Bayes Compromise: A Brief Review , 1992 .

[4]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[5]  P. Good Permutation, Parametric, and Bootstrap Tests of Hypotheses , 2005 .

[6]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[7]  M. Hallett Human Brain Function , 1998, Trends in Neurosciences.

[8]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[9]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[10]  D Le Bihan,et al.  Detection of fMRI activation using Cortical Surface Mapping , 2001, Human brain mapping.

[11]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[12]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[13]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[14]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[15]  D. Louis Collins,et al.  Retrospective evaluation of intersubject brain registration , 2003, IEEE Transactions on Medical Imaging.

[16]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[17]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[18]  G. Claeskens,et al.  Bayesian-motivated tests of function fit and their asymptotic frequentist properties , 2004, math/0508601.

[19]  Hae Yong Kim,et al.  Robust anisotropic diffusion to produce enhanced statistical parametric map from noisy fMRI , 2005, Comput. Vis. Image Underst..

[20]  E. Ziegel Permutation, Parametric, and Bootstrap Tests of Hypotheses (3rd ed.) , 2005 .

[21]  Hal S. Stern,et al.  A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fMRI Data , 2006, MICCAI.

[22]  B. Thirion,et al.  Combined permutation test and mixed‐effect model for group average analysis in fMRI , 2006, Human brain mapping.

[23]  Jean-Baptiste Poline,et al.  Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses , 2007, NeuroImage.

[24]  Jean-Francois Mangin,et al.  High Level Group Analysis of FMRI Data Based on Dirichlet Process Mixture Models , 2007, IPMI.

[25]  Lei Xu,et al.  Bayesian Spatial Modeling of fMRI Data: A Multiple Subject Analysis. , 2007 .

[26]  Bertrand Thirion,et al.  Mixed-effect statistics for group analysis in fMRI: A nonparametric maximum likelihood approach , 2007, NeuroImage.