A new invariant representation for color images and its application

Factors such as shading, shadow, and highlight, observed from object surfaces in a scene, affect seriously the appearance and analysis of the color images. In this paper, we propose a new invariant representation that is derived from the standard dichromatic reflection model for inhomogeneous dielectric and the extended dichromatic reflection model for homogeneous metal. The illumination color is estimated from the specular reflection component on inhomogeneous surfaces without using a reference white standard. The overall performance of the proposed invariant representation is examined in experiments using real-world objects including metals and dielectrics. The feasibility of effective edge detection is introduced and compared with the state-of-the-art invariant methods.

[1]  Glenn Healey,et al.  The Illumination-Invariant Recognition of 3D Objects Using Local Color Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Shoji Tominaga,et al.  Surface Identification Using the Dichromatic Reflection Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  尺長 健 International Conference on Computer Vision (ICCV'93) , 1993 .

[4]  Katsushi Ikeuchi,et al.  Separating Reflection Components of Textured Surfaces Using a Single Image , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  S. J.P. Characteristic spectra of Munsell colors , 2002 .

[7]  Shoji Tominaga Spectral imaging by a multichannel camera , 1999, J. Electronic Imaging.

[8]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[10]  Joost van de Weijer,et al.  Edge and corner detection by photometric quasi-invariants , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  S. Tominaga,et al.  Polarization imaging for material classification , 2008 .

[12]  Hsien-Che Lee,et al.  Modeling Light Reflection for Computer Color Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Shoji Tominaga,et al.  MULTICHANNEL VISION SYSTEM FOR ESTIMATING SURFACE AND ILLUMINATION FUNCTIONS , 1996 .

[14]  Theo Gevers,et al.  Classifying color edges in video into shadow-geometry, highlight, or material transitions , 2003, IEEE Trans. Multim..

[15]  Joost van de Weijer,et al.  Robust photometric invariant features from the color tensor , 2006, IEEE Transactions on Image Processing.

[16]  David J. Kriegman,et al.  Beyond Lambert: reconstructing specular surfaces using color , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Shoji Tominaga Spectral imaging by a multi-channel camera , 1999 .

[18]  Shree K. Nayar,et al.  A class of photometric invariants: separating material from shape and illumination , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[19]  Alain Trémeau,et al.  Color in Image and Video Processing: Most Recent Trends and Future Research Directions , 2008, EURASIP J. Image Video Process..

[20]  Shoji Tominaga,et al.  Dichromatic reflection models for a variety of materials , 1994 .

[21]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[22]  B. Wandell,et al.  Standard surface-reflectance model and illuminant estimation , 1989 .

[23]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[24]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[25]  Arnold W. M. Smeulders,et al.  Invariant representation in image processing , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[26]  Graham D. Finlayson,et al.  Color in Perspective , 1996, IEEE Trans. Pattern Anal. Mach. Intell..