The hippocampal rate code: anatomy, physiology and theory

[1]  D. Amaral,et al.  The Hippocampal Formation , 2009 .

[2]  M. Fyhn,et al.  Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex , 2008, Hippocampus.

[3]  T. Hafting,et al.  Grid cells in mice , 2008, Hippocampus.

[4]  James M. McFarland,et al.  Reactivation in Ventral Striatum during Hippocampal Ripples: Evidence for the Binding of Reward and Spatial Memories? , 2008, The Journal of Neuroscience.

[5]  M. Witter,et al.  What Does the Anatomical Organization of the Entorhinal Cortex Tell Us? , 2008, Neural plasticity.

[6]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[7]  T. Hafting,et al.  Finite Scale of Spatial Representation in the Hippocampus , 2008, Science.

[8]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[9]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[10]  Riichi Kajiwara,et al.  Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1—An anatomical study in the rat , 2008, Hippocampus.

[11]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[12]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.

[13]  C. McBain Differential mechanisms of transmission and plasticity at mossy fiber synapses. , 2008, Progress in brain research.

[14]  Stefan Leutgeb,et al.  Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. , 2007, Learning & memory.

[15]  Kara L. Agster,et al.  Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas , 2007, Hippocampus.

[16]  Alex M Thomson,et al.  Characterization of Neurons in the CA2 Subfield of the Adult Rat Hippocampus , 2007, The Journal of Neuroscience.

[17]  Douglas A Nitz,et al.  Discrete place fields of hippocampal formation interneurons. , 2007, Journal of neurophysiology.

[18]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[19]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[20]  M. Wilson,et al.  Spatial selectivity and theta phase precession in CA1 interneurons , 2007, Hippocampus.

[21]  Andrew P Maurer,et al.  Phase Precession in Hippocampal Interneurons Showing Strong Functional Coupling to Individual Pyramidal Cells , 2006, The Journal of Neuroscience.

[22]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[23]  S. O’Mara Controlling hippocampal output: The central role of subiculum in hippocampal information processing , 2006, Behavioural Brain Research.

[24]  T. Kosaka,et al.  Cellular architecture of the mouse hippocampus: A quantitative aspect of chemically defined GABAergic neurons with stereology , 2006, Neuroscience Research.

[25]  B. Sakmann,et al.  Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states , 2006, Nature Neuroscience.

[26]  I. Módy,et al.  Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons , 2006, The Journal of physiology.

[27]  M. Migliore,et al.  Input–output relations in the entorhinal cortex–dentate–hippocampal system: Evidence for a non-linear transfer of signals , 2006, Neuroscience.

[28]  Albert K. Lee,et al.  Whole-Cell Recordings in Freely Moving Rats , 2006, Neuron.

[29]  Nelson Spruston,et al.  Distance-Dependent Differences in Synapse Number and AMPA Receptor Expression in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[30]  Jonathan D. Cohen,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006 .

[31]  N. Spruston,et al.  Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons , 2005, Nature Neuroscience.

[32]  D. Coulter,et al.  Hippocampal CA1 Circuitry Dynamically Gates Direct Cortical Inputs Preferentially at Theta Frequencies , 2005, The Journal of Neuroscience.

[33]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[34]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[35]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[36]  B. McNaughton,et al.  Self‐motion and the origin of differential spatial scaling along the septo‐temporal axis of the hippocampus , 2005, Hippocampus.

[37]  A. Winseck,et al.  Stereological quantification of GAD‐67–immunoreactive neurons and boutons in the hippocampus of middle‐aged and old Fischer 344 × Brown Norway rats , 2004, The Journal of comparative neurology.

[38]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[39]  Inah Lee,et al.  A Double Dissociation between Hippocampal Subfields Differential Time Course of CA3 and CA1 Place Cells for Processing Changed Environments , 2004, Neuron.

[40]  M. Mehta Cooperative LTP can map memory sequences on dendritic branches , 2004, Trends in Neurosciences.

[41]  T. Kosaka,et al.  Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the disector , 1994, Experimental Brain Research.

[42]  Daniel L. Schacter,et al.  Spatial Representation in the Entorhinal Cortex , 2004 .

[43]  F. H. Lopes da Silva,et al.  Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re‐entrance in the hippocampal–entorhinal system , 2003, The European journal of neuroscience.

[44]  John O'Keefe,et al.  Independent rate and temporal coding in hippocampal pyramidal cells , 2003, Nature.

[45]  T. van Groen,et al.  The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation , 2003, Hippocampus.

[46]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[47]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[48]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[49]  Hippocampal terminology: concepts, misconceptions, origins. , 2002, Endeavour.

[50]  J. Magee,et al.  Distance-Dependent Increase in AMPA Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal Neurons , 2001, The Journal of Neuroscience.

[51]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[52]  B. McNaughton,et al.  Independence of Firing Correlates of Anatomically Proximate Hippocampal Pyramidal Cells , 2001, The Journal of Neuroscience.

[53]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[54]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001, Network.

[55]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[56]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[57]  D. Collier,et al.  Stereological estimation of the total number of neurons in the murine hippocampus using the optical disector , 1999, The Journal of comparative neurology.

[58]  E T Rolls,et al.  Analysis of information transmission in the schaffer collaterals , 1999, Hippocampus.

[59]  T. Kosaka,et al.  Quantitative analysis of GABAergic neurons in the mouse hippocampus, with optical disector using confocal laser scanning microscope , 1998, Brain Research.

[60]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[61]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[62]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[63]  R. Weinberg,et al.  Enhanced expression of AMPA receptor protein at perforated axospinous synapses , 1998, Neuroreport.

[64]  Bruce L. McNaughton,et al.  Expansion and shift of hippocampal place fields: evidence for synaptic potentiation during behavior , 1997 .

[65]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  James M. Bower,et al.  Computational Neuroscience: Trends in Research , 1996 .

[67]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[68]  M. Bear,et al.  Metaplasticity: the plasticity of synaptic plasticity , 1996, Trends in Neurosciences.

[69]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[70]  R. Empson,et al.  Perforant path connections to area CA1 are predominantly inhibitory in the rat hippocampal‐entorhinal cortex combined slice preparation , 1995, Hippocampus.

[71]  B. McNaughton,et al.  Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[73]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[74]  B. McNaughton,et al.  Spatial selectivity of unit activity in the hippocampal granular layer , 1993, Hippocampus.

[75]  Edmund T. Rolls,et al.  What determines the capacity of autoassociative memories in the brain? Network , 1991 .

[76]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[77]  P. Best,et al.  Place cells and silent cells in the hippocampus of freely-behaving rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  G. Paxinos The Rat nervous system , 1985 .

[80]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[81]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[82]  F. T. Lewis The significance of the term Hippocampus , 1923 .