Synchronized amplification of local information transmission by peripheral retinal input

Sensory stimuli have varying statistics influenced by both the environment and by active sensing behaviors that rapidly and globally change the sensory input. Consequently, sensory systems often adjust their neural code to the expected statistics of their sensory input to transmit novel sensory information. Here, we show that sudden peripheral motion amplifies and accelerates information transmission in salamander ganglion cells in a 50 ms time window. Underlying this gating of information is a transient increase in adaptation to contrast, enhancing sensitivity to a broader range of stimuli. Using a model and natural images, we show that this effect coincides with an expected increase in information in bipolar cells after a global image shift. Our findings reveal the dynamic allocation of energy resources to increase neural activity at times of expected high information content, a principle of adaptation that balances the competing requirements of conserving spikes and transmitting information. DOI: http://dx.doi.org/10.7554/eLife.09266.001

[1]  Katherine I. Nagel,et al.  Temporal Processing and Adaptation in the Songbird Auditory Forebrain , 2006, Neuron.

[2]  H. Collewijn,et al.  Eye and head movements in the freely moving rabbit , 1977, Brain Research.

[3]  Saskia E. J. de Vries,et al.  Retinal Ganglion Cells Can Rapidly Change Polarity from Off to On , 2007, PLoS biology.

[4]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[5]  S. Easter The time course of saccadic eye movements in goldfish , 1975, Vision Research.

[6]  O. Wess,et al.  Involuntary eye movements in salamanders , 1977, Naturwissenschaften.

[7]  D. Tolhurst,et al.  Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes , 2000, Vision Research.

[8]  Daniel N. Hill,et al.  Primary Motor Cortex Reports Efferent Control of Vibrissa Motion on Multiple Timescales , 2011, Neuron.

[9]  G Manteuffel A 'physiological' model for the salamander horizontal optokinetic reflex. , 1984, Brain, behavior and evolution.

[10]  Vijay Balasubramanian,et al.  Natural Images from the Birthplace of the Human Eye , 2011, PloS one.

[11]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[12]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[13]  Pravin Varaiya,et al.  Capacity of fading channels with channel side information , 1997, IEEE Trans. Inf. Theory.

[14]  H. Barlow,et al.  Changes in the maintained discharge with adaptation level in the cat retina , 1969, The Journal of physiology.

[15]  K. Tasaki,et al.  Shift-effect in the rabbit retinal ganglion cells , 1980, Brain Research.

[16]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[17]  Y X Zhou,et al.  Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells. , 1992, Vision research.

[18]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[19]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[20]  M. Schnitzer,et al.  Multineuronal Firing Patterns in the Signal from Eye to Brain , 2003, Neuron.

[21]  C. Enroth-Cugell,et al.  of Cat Retinal Ganglion Cells , 1987 .

[22]  R. Baddeley,et al.  The long and the short of it: Spatial statistics at fixation vary with saccade amplitude and task , 2006, Vision Research.

[23]  Matthew C Smear,et al.  Precise olfactory responses tile the sniff cycle , 2011, Nature Neuroscience.

[24]  A. Fuchs Periodic eye tracking in the monkey , 1967, The Journal of physiology.

[25]  Li Chao-Yi,et al.  Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells , 1992, Vision Research.

[26]  G. Matthews,et al.  Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons , 1996, Neuron.

[27]  A. Fuchs,et al.  Oblique saccadic eye movements of the cat , 2004, Experimental Brain Research.

[28]  S. Baccus,et al.  Linking the Computational Structure of Variance Adaptation to Biophysical Mechanisms , 2012, Neuron.

[29]  R. Barth,et al.  The shift-effect in retinal ganglion cells of the rhesus monkey , 1975, Experimental Brain Research.

[30]  R. Shapley,et al.  The nonlinear pathway of Y ganglion cells in the cat retina , 1979, The Journal of general physiology.

[31]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[32]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[33]  Gerhard Roth,et al.  A model of the saccadic sensorimotor system of salamanders , 1993, Biological Cybernetics.

[34]  H Ikeda,et al.  Functional organization of the periphery effect in retinal ganglion cells. , 1972, Vision research.

[35]  Stephen A. Baccus,et al.  A Retinal Circuit That Computes Object Motion , 2008, The Journal of Neuroscience.

[36]  J. Mcilwain RECEPTIVE FIELDS OF OPTIC TRACT AXONS AND LATERAL GENICULATE CELLS: PERIPHERAL EXTENT AND BARBITURATE SENSITIVITY. , 1964, Journal of neurophysiology.

[37]  W Bialek,et al.  On the application of information theory to neural spike trains. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[38]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[39]  J. Krüger,et al.  Strong periphery effect in cat retinal ganglion cells. Excitatory responses in ON- and OFF-center neurones to single grid displacements , 1973, Experimental Brain Research.

[40]  G. Matthews,et al.  Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  J. B. Demb,et al.  Contrast Adaptation in Subthreshold and Spiking Responses of Mammalian Y-Type Retinal Ganglion Cells , 2005, The Journal of Neuroscience.

[42]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[43]  J. Marvin,et al.  Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina , 2013, The Journal of Neuroscience.

[44]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[45]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[46]  F. Rieke Temporal Contrast Adaptation in Salamander Bipolar Cells , 2001, The Journal of Neuroscience.

[47]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[48]  M. Meister,et al.  Decorrelation and efficient coding by retinal ganglion cells , 2012, Nature Neuroscience.

[49]  R. Baloh,et al.  The saccade velocity test , 1975, Neurology.

[50]  F. Werblin,et al.  Rapid global shifts in natural scenes block spiking in specific ganglion cell types , 2003, Nature Neuroscience.

[51]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[52]  S. Baccus,et al.  Coordinated dynamic encoding in the retina using opposing forms of plasticity , 2011, Nature Neuroscience.

[53]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[54]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[55]  F S Werblin,et al.  Lateral Interactions at Inner Plexiform Layer of Vertebrate Retina: Antagonistic Responses to Change , 1972, Science.

[56]  H. Barlow,et al.  The effects of remote retinal stimulation on the responses of cat retinal ganglion cells. , 1977, The Journal of physiology.

[57]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[58]  J. Troy,et al.  Effects of Remote Stimulation on the Modulated Activity of Cat Retinal Ganglion Cells , 2009, The Journal of Neuroscience.

[59]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.