Accelerated Chemical Space Search Using a Quantum-Inspired Cluster Expansion Approach

[1]  Zachary W. Ulissi,et al.  The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis , 2022, ACS Catalysis.

[2]  Qingyuan Wang,et al.  Significantly Enhanced Oxygen Evolution Reaction Performance by Tuning Surface States of Co Through Cu Modification in Alloy Structure , 2021, Journal of Electroanalytical Chemistry.

[3]  A. Ludwig,et al.  Bayesian Optimization of High‐Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction , 2021, Angewandte Chemie.

[4]  Huisheng Peng,et al.  Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. , 2021, Journal of the American Chemical Society.

[5]  W. Saidi,et al.  Optimization of High-Entropy Alloy Catalyst for Ammonia Decomposition and Ammonia Synthesis. , 2021, The journal of physical chemistry letters.

[6]  Qi Shao,et al.  Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction , 2021, Advanced materials.

[7]  Wencong Lu,et al.  Machine learning for perovskite materials design and discovery , 2021, npj Computational Materials.

[8]  Jonathan P. Mailoa,et al.  E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials , 2021, Nature Communications.

[9]  Andrew S. Rosen,et al.  Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery , 2020, Matter.

[10]  Huisheng Peng,et al.  High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics , 2020, Nature Catalysis.

[11]  Tim Mueller,et al.  Predicting activation energies for vacancy-mediated diffusion in alloys using a transition-state cluster expansion , 2020, 2009.12474.

[12]  Andrew E. Brereton,et al.  Assessing methods and obstacles in chemical space exploration , 2020, Applied AI Letters.

[13]  Changpeng Liu,et al.  Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. , 2020, Nanoscale.

[14]  Y. Lawryshyn,et al.  Market Graph Clustering Via QUBO and Digital Annealing , 2020, Journal of Risk and Financial Management.

[15]  Tonio Buonassisi,et al.  An Invertible Crystallographic Representation for General Inverse Design of Inorganic Crystals with Targeted Properties , 2020, SSRN Electronic Journal.

[16]  Qianxiao Li,et al.  Inverse design of crystals using generalized invertible crystallographic representation , 2020, ArXiv.

[17]  Benjamin J. Bucior,et al.  Inverse design of nanoporous crystalline reticular materials with deep generative models , 2020, Nature Machine Intelligence.

[18]  Zachary W. Ulissi,et al.  Discovery of Acid-Stable Oxygen Evolution Catalysts: High-Throughput Computational Screening of Equimolar Bimetallic Oxides. , 2020, ACS applied materials & interfaces.

[19]  E. Sargent,et al.  Machine-Learning-Accelerated Perovskite Crystallization , 2020, Matter.

[20]  Y. Qu,et al.  Iridium‐Chromium Oxide Nanowires as Highly Performed OER Catalysts in Acidic Media , 2019 .

[21]  Bin Zhang,et al.  Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach , 2019, Advanced science.

[22]  Jianjun Hu,et al.  Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials , 2019, npj Computational Materials.

[23]  Alán Aspuru-Guzik,et al.  Inverse Design of Solid-State Materials via a Continuous Representation , 2019, Matter.

[24]  Rhys E. A. Goodall,et al.  Predicting materials properties without crystal structure: deep representation learning from stoichiometry , 2019, Nature Communications.

[25]  Jinlong Gong,et al.  Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting , 2019, Energy & Environmental Science.

[26]  Chris Wolverton,et al.  Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery , 2019, 1906.05267.

[27]  Shahrokh Valaee,et al.  Digitally Annealed Solution for the Maximum Clique Problem with Critical Application in Cellular V2X , 2019, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[28]  Jihan Kim,et al.  Inverse design of porous materials using artificial neural networks , 2019, Science Advances.

[29]  Jie Jiang,et al.  Accelerated Discovery of Efficient Solar-cell Materials using Quantum and Machine-learning Methods. , 2019, Chemistry of materials : a publication of the American Chemical Society.

[30]  Erik Fransson,et al.  ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions , 2019, Advanced Theory and Simulations.

[31]  Zheng Jiang,et al.  Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media , 2019, Nature Communications.

[32]  Chi Chen,et al.  Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals , 2018, Chemistry of Materials.

[33]  Xuri Huang,et al.  Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers , 2018, Nature Communications.

[34]  Youyong Li,et al.  Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts , 2018, Science Advances.

[35]  Jeffrey C Grossman,et al.  Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. , 2017, Physical review letters.

[36]  Alok Choudhary,et al.  Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations , 2017 .

[37]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[38]  O. Voznyy,et al.  High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications , 2017 .

[39]  C. Draxl,et al.  Predicting Ground-State Configurations and Electronic Properties of the Thermoelectric Clathrates Ba8AlxSi46–x and Sr8AlxSi46–x , 2017, 1708.08126.

[40]  P. Strasser,et al.  NiFe‐Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non‐Acidic Electrolytes , 2016 .

[41]  Aron Walsh,et al.  Computational Screening of All Stoichiometric Inorganic Materials , 2016, Chem.

[42]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[43]  Joseph H. Montoya,et al.  A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction , 2016, Science.

[44]  Cormac Toher,et al.  Universal fragment descriptors for predicting properties of inorganic crystals , 2016, Nature Communications.

[45]  A. Vojvodić,et al.  Homogeneously dispersed multimetal oxygen-evolving catalysts , 2016, Science.

[46]  Kari Laasonen,et al.  First-principles investigation of the Cu–Ni, Cu–Pd, and Ni–Pd binary alloy systems , 2015 .

[47]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[48]  Ryan Babbush,et al.  Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing , 2012 .

[49]  Koretaka Yuge Modeling configurational energetics on multiple lattices through extended cluster expansion , 2012 .

[50]  Tim Mueller,et al.  Bayesian approach to cluster expansions , 2009 .

[51]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[52]  Y. Park,et al.  The effect of Cu reflow on the Pd–Cu–Ni ternary alloy membrane fabrication for infinite hydrogen separation , 2008 .

[53]  Gus L. W. Hart,et al.  Using genetic algorithms to map first-principles results to model Hamiltonians: Application to the generalized Ising model for alloys , 2005 .

[54]  Alex Zunger,et al.  Mixed-basis cluster expansion for thermodynamics of bcc alloys , 2004 .

[55]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[56]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[57]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[58]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[59]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[60]  K. Schwarz,et al.  Chemical bonding in rutile-type compounds , 1992 .

[61]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[62]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[63]  AkshatKumar Nigam,et al.  Curiosity in exploring chemical space: Intrinsic rewards for deep molecular reinforcement learning , 2020, ArXiv.

[64]  Alán Aspuru-Guzik,et al.  Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC) , 2017 .

[65]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[66]  Ralf Eggeling,et al.  User guide , 2000 .

[67]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .