An investigation of novel approaches for optimising retail shelf space allocation

This thesis is concerned with real-world shelf space allocation problems that arise due to the conflict of limited shelf space availability and the large number of products that need to be displayed. Several important issues in the shelf space allocation problem are identified and two mathematical models are developed and studied. The first model deals with a general shelf space allocation problem while the second model specifically concerns shelf space allocation for fresh produce. Both models are closely related to the knapsack and bin packing problem. The thesis firstly studies a recently proposed generic search technique, hyper-heuristics, and introduces a simulated annealing acceptance criterion in order to improve its performance. The proposed algorithm, called simulated annealing hyper-heuristics, is initially tested on the one-dimensional bin packing problem, with very promising and competitive results being produced. The algorithm is then applied to the general shelf space allocation problem. The computational results show that the proposed algorithm is superior to a general simulated annealing algorithm and other types of hyper-heuristics. For the test data sets used in the thesis, the new approach solves every instance to over 98% of the upper bound which was obtained via a two-stage relaxation method. The thesis also studies and formulates a deterministic shelf space allocation and inventory model specifically for fresh produce. The model, for the first time, considers the freshness condition as an important factor in influencing a product's demand. Further analysis of the model shows that the search space of the problem can be reduced by decomposing the problem into a nonlinear knapsack problem and a single-item inventory problem that can be solved optimally by a binary search. Several heuristic and meta-heuristic approaches are utilised to optimise the model, including four efficient gradient based constructive heuristics, a multi-start generalised reduced gradient (GRG) algorithm, simulated annealing, a greedy randomised adaptive search procedure (GRASP) and three different types of hyper-heuristics. Experimental results show that the gradient based constructive heuristics are very efficient and all meta-heuristics can only marginally improve on them. Among these meta-heuristics, two simulated annealing based hyper-heuristic performs slightly better than the other meta-heuristic methods. Across all test instances of the three problems, it is shown that the introduction of simulated annealing in the current hyper-heuristics can indeed improve the performance of the algorithms. However, the simulated annealing hyper-heuristic with random heuristic selection generally performs best among all the other meta-heuristics implemented in this thesis. This research is funded by the Engineering and Physical Sciences Research Council (EPSRC) grant reference GR/R60577. Our industrial collaborators include Tesco Retail Vision and SpaceIT Solutions Ltd.

[1]  Michel Gendreau,et al.  Diversification strategies in tabu search algorithms for the maximum clique problem , 1996, Ann. Oper. Res..

[2]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[3]  Ming-Hsien Yang,et al.  An efficient algorithm to allocate shelf space , 2001, Eur. J. Oper. Res..

[4]  Abdul Raouf,et al.  On the Constrained Multi‐item Single‐period Inventory Problem , 1993 .

[5]  Anders Yeo,et al.  Large Exponential Neighbourhoods for the Traveling Salesman Problem , 1997 .

[6]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[7]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[8]  Roy Thurik,et al.  Consumer response to the preferred brand out‐of‐stock situation , 1998 .

[9]  Jiyin Liu,et al.  The impact of neighbourhood size on the process of simulated annealing: computational experiments on the flowshop scheduling problem , 1999 .

[10]  Éric D. Taillard,et al.  Parallel Taboo Search Techniques for the Job Shop Scheduling Problem , 1994, INFORMS J. Comput..

[11]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[12]  K. Dowsland Some experiments with simulated annealing techniques for packing problems , 1993 .

[13]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[14]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[15]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[16]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[17]  S. K. Goyal,et al.  Recent trends in modeling of deteriorating inventory , 2001, Eur. J. Oper. Res..

[18]  Thomas W. Gruen,et al.  Determinants and outcomes of plan objectivity and implementation in category management relationships , 2000 .

[19]  Alistair I. Mees,et al.  Convergence of an annealing algorithm , 1986, Math. Program..

[20]  Timothy L. Urban The interdependence of inventory management and retail shelf management , 2002 .

[21]  B. Mandal,et al.  An Inventory Model for Deteriorating Items and Stock-dependent Consumption Rate , 1989 .

[22]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[23]  Graham Kendall,et al.  An Investigation of a Tabu-Search-Based Hyper-Heuristic for Examination Timetabling , 2005 .

[24]  Colin R. Reeves,et al.  Improving the Efficiency of Tabu Search for Machine Sequencing Problems , 1993 .

[25]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[26]  Luca Maria Gambardella,et al.  Adaptive memory programming: A unified view of metaheuristics , 1998, Eur. J. Oper. Res..

[27]  Timothy L. Urban,et al.  Optimal ordering and pricing policies in a single-period environment with multivariate demand and markdowns , 1997 .

[28]  Jonas Mockus,et al.  A Set of Examples of Global and Discrete Optimization , 2000 .

[29]  David Coley,et al.  Introduction to Genetic Algorithms for Scientists and Engineers , 1999 .

[30]  Thomas E. Morton,et al.  Near Myopic Heuristics for the Fixed-Life Perishability Problem , 1993 .

[31]  Graham Kendall,et al.  Applying Simulated Annealing and the No Fit Polygon to the Nesting Problem , 2000 .

[32]  Edmund K. Burke,et al.  An Ant Algorithm Hyper-heuristic , 2003 .

[33]  Edward Tsang,et al.  Solving constraint satisfaction problems using neural networks , 1991 .

[34]  Kenneth J. Supowit,et al.  Simulated Annealing Without Rejected Moves , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[35]  Edward A. Silver,et al.  Lot sizing for a product subject to obsolescence or perishability , 1994 .

[36]  Stephen J. Hoch,et al.  Shelf management and space elasticity , 1994 .

[37]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[38]  Mark Davies,et al.  The location and merchandising of non‐food in supermarkets , 1996 .

[39]  Jonas Mockus,et al.  Bayesian Approach to Global Optimization , 1989 .

[40]  Sanja Petrovic,et al.  Case-Based Reasoning as a Heuristic Selector in a Hyper-Heuristic for Course Timetabling Problems , 2002 .

[41]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[42]  Andrew Lim,et al.  Metaheuristics with Local Search Techniques for Retail Shelf-Space Optimization , 2004, Manag. Sci..

[43]  K. Cox,et al.  The Effect of Shelf Space upon Sales of Branded Products , 1970 .

[44]  Michael Randolph Garey,et al.  Approximation algorithms for bin-packing , 1984 .

[45]  F. Glover Scatter search and path relinking , 1999 .

[46]  Gleb Belov,et al.  A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting , 2006, Eur. J. Oper. Res..

[47]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[48]  K. Bouleimen,et al.  A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version , 2003, Eur. J. Oper. Res..

[49]  Haiping Xu,et al.  An economic ordering policy model for deteriorating items with time proportional demand , 1990 .

[50]  Manoranjan Maiti,et al.  Inventory of multi-deteriorating items sold from two shops under single management with constraints on space and investment , 2001, Comput. Oper. Res..

[51]  Steven Nahmias,et al.  Perishable Inventory Theory: A Review , 1982, Oper. Res..

[52]  P. Cowling,et al.  A Parameter-Free Hyperheuristic for Scheduling a Sales Summit , 2002 .

[53]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[54]  Paolo Toth,et al.  Dynamic programming algorithms for the Zero-One Knapsack Problem , 1980, Computing.

[55]  Gilbert Laporte,et al.  A Tabu Search Heuristic for the Vehicle Routing Problem , 1991 .

[56]  Paul Farris,et al.  A sensitivity analysis of retailer shelf management models , 1995 .

[57]  Thomas Stützle,et al.  Classification of Metaheuristics and Design of Experiments for the Analysis of Components , 2001 .

[58]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[59]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[60]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[61]  Paolo Toth,et al.  Lower bounds and reduction procedures for the bin packing problem , 1990, Discret. Appl. Math..

[62]  Eric Soubeiga,et al.  Development and application of hyperheuristics to personnel scheduling , 2003 .

[63]  Balázs Kotnyek,et al.  Application of heuristic methods for conformance test selection , 2002, Eur. J. Oper. Res..

[64]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[65]  Luca Maria Gambardella,et al.  An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem , 2000, INFORMS J. Comput..

[66]  Peter Ross,et al.  Solving a Real-World Problem Using an Evolving Heuristically Driven Schedule Builder , 1998, Evolutionary Computation.

[67]  Jadranka Skorin-Kapov,et al.  Scheduling a flow-line manufacturing cell: a tabu search approach , 1993 .

[68]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[69]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[70]  Alberto Sangiovanni-Vincentelli,et al.  ThunderBird: a complete standard cell layout package , 1988 .

[71]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[72]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[73]  S. Martello,et al.  An upper bound for the zero-one knapsack problem and a branch and bound algorithm , 1977 .

[74]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[75]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[76]  Graham Kendall,et al.  A Tabu Search Hyper-heuristic Approach to the Examination Timetabling Problem at the MARA University of Technology , 2004, PATAT.

[77]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[78]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[79]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[80]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[81]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[82]  Jonas Mockus,et al.  Application of Bayesian approach to numerical methods of global and stochastic optimization , 1994, J. Glob. Optim..

[83]  P. Farris,et al.  A Model for Determining Retail Product Category Assortment and Shelf Space Allocation , 1994 .

[84]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[85]  Xin Yao,et al.  Evolutionary computation : theory and applications , 1999 .

[86]  Peter O'Grady,et al.  A general search sequencing rule for job shop sequencing , 1985 .

[87]  Ronald C. Curhan Shelf Space Allocation and Profit Maximization in Mass Retailing , 1973 .

[88]  Walid Ben-Ameur,et al.  Computing the Initial Temperature of Simulated Annealing , 2004, Comput. Optim. Appl..

[89]  David Abramson,et al.  Constructing school timetables using simulated annealing: sequential and parallel algorithms , 1991 .

[90]  Michel Gendreau,et al.  Recent Advances in Tabu Search , 2002 .

[91]  Jatinder N. D. Gupta,et al.  A new heuristic algorithm for the one-dimensional bin-packing problem , 1999 .

[92]  Fred W. Glover,et al.  Tabu search for graph partitioning , 1996, Ann. Oper. Res..

[93]  R. Bellman Dynamic programming. , 1957, Science.

[94]  S. Iyengar,et al.  Bin-packing by simulated annealing , 1994 .

[95]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[96]  Joseph B. Mazzola,et al.  Single-facility resource allocation under capacity-based economies and diseconomics of scope , 1995 .

[97]  A. Goswami,et al.  An inventory model for deteriorating items with stock-dependent demand rate , 1996 .

[98]  As Fraser,et al.  Simulation of Genetic Systems by Automatic Digital Computers VII. Effects of Reproductive Ra'l'e, and Intensity of Selection, on Genetic Structure , 1960 .

[99]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[100]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[101]  Patrick De Causmaecker,et al.  Practice and Theory of Automated Timetabling IV: 4th International Conference, PATAT 2002, Gent, Belgium, August 21-23, 2002, Selected Revised Papers , 2003 .

[102]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[103]  J. L. Maryak,et al.  Bayesian Heuristic Approach to Discrete and Global Optimization , 1999, Technometrics.

[104]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[105]  Fred S. Zufryden,et al.  A Dynamic Programming Approach for Product Selection and Supermarket Shelf-Space Allocation , 1986 .

[106]  Bala Shetty,et al.  The nonlinear knapsack problem - algorithms and applications , 2002, Eur. J. Oper. Res..

[107]  Paolo Carnevali,et al.  Image Processing by Simulated Annealing , 1985, IBM J. Res. Dev..

[108]  Bing Lam Luk,et al.  Adaptive simulated annealing for optimization in signal processing applications , 1999, Signal Process..

[109]  Hark Hwang,et al.  A model for shelf space allocation and inventory control considering location and inventory level effects on demand , 2005 .

[110]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[111]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[112]  J. Kotzan,et al.  Responsiveness of Drug Store Sales to Shelf Space Allocations , 1969 .

[113]  K. M. Ragsdell,et al.  The Generalized Reduced Gradient Method: A Reliable Tool for Optimal Design , 1977 .

[114]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[115]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[116]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[117]  Gilbert Laporte,et al.  Recent Developments in Practical Examination Timetabling , 1995, PATAT.

[118]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[119]  Jim Smith,et al.  Co-evolving Memetic Algorithms: Initial Investigations , 2002, PPSN.

[120]  Zhaotong Lian,et al.  (s, S) Continuous review models for inventory with fixed lifetimes , 1999 .

[121]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[122]  Kathryn A. Dowsland,et al.  A robust simulated annealing based examination timetabling system , 1998, Comput. Oper. Res..

[123]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[124]  Sartaj Sahni,et al.  Approximate Algorithms for the 0/1 Knapsack Problem , 1975, JACM.

[125]  Ronald C. Curhan The Relationship between Shelf Space and Unit Sales in Supermarkets , 1972 .

[126]  Pierre Hansen,et al.  Variable Neighbourhood Search , 2003 .

[127]  Liming Liu,et al.  (s, S) continuous review models for inventory with random lifetimes , 1990 .

[128]  J. S. F. Barker,et al.  Simulation of Genetic Systems by Automatic Digital Computers , 1958 .

[129]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[130]  Graham Kendall,et al.  An adaptive Length chromosome Hyper-Heuristic Genetic Algorithm for a Trainer Scheduling Problem , 2002, SEAL.

[131]  H. Cohn,et al.  Simulated Annealing: Searching for an Optimal Temperature Schedule , 1999, SIAM J. Optim..

[132]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[133]  A. Hertz,et al.  A new heuristic method for the flow shop sequencing problem , 1989 .

[134]  Okitsugu Fujiwara,et al.  EOQ models for continuously deteriorating products using linear and exponential penalty costs , 1993 .

[135]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[136]  Emanuel Falkenauer,et al.  Genetic Algorithms and Grouping Problems , 1998 .

[137]  Michael W. Carter,et al.  OR Practice - A Survey of Practical Applications of Examination Timetabling Algorithms , 1986, Oper. Res..

[138]  Ann Verhetsel,et al.  The impact of location factors on the attractiveness and optimal space shares of product categories , 2000 .

[139]  G. Kendall,et al.  Channel assignment optimisation using a hyper-heuristic , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[140]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[141]  David K. Smith,et al.  The application of the simulated annealing algorithm to the solution of the n/m/Cmax flowshop problem , 1990, Comput. Oper. Res..

[142]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[143]  Jian Ma,et al.  Theory and Methodology Application of the simulated annealing algorithm to the combinatorial optimisation problem with permutation property : An investigation of generation mechanism , 1997 .

[144]  R. H. Hollier,et al.  Inventory replenishment policies for deteriorating items in a declining market , 1983 .

[145]  Edward Tsang,et al.  A cascadable VLSI design for GENET , 1995 .

[146]  Graham Kendall,et al.  A Monte Carlo Hyper-Heuristic To Optimise Component Placement Sequencing For Multi Head Placement Machine , 2003 .

[147]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[148]  J. Mockus,et al.  The Bayesian approach to global optimization , 1989 .

[149]  Graham Kendall,et al.  Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .

[150]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[151]  Ming-Hsien Yang,et al.  A study on shelf space allocation and management , 1999 .

[152]  Graham Kendall,et al.  An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[153]  Graham Kendall,et al.  Channel assignment in cellular communication using a great deluge hyper-heuristic , 2004, Proceedings. 2004 12th IEEE International Conference on Networks (ICON 2004) (IEEE Cat. No.04EX955).

[154]  Graham Kendall,et al.  An Investigation of Automated Planograms Using a Simulated Annealing Based Hyper-Heuristic , 2005 .

[155]  David Connolly An improved annealing scheme for the QAP , 1990 .

[156]  Rakesh,et al.  Dynamic Pricing and Ordering Decisions by a Monopolist , 1992 .

[157]  Gregory Gutin,et al.  Exponential neighbourhood local search for the traveling salesman problem , 1999, Comput. Oper. Res..

[158]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[159]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[160]  José M. Valério de Carvalho,et al.  Exact solution of bin-packing problems using column generation and branch-and-bound , 1999, Ann. Oper. Res..

[161]  David B. Fogel,et al.  Evolutionary Computation: The Fossil Record , 1998 .

[162]  Ehl Emile Aarts,et al.  Statistical cooling : a general approach to combinatorial optimization problems , 1985 .

[163]  Valérie Renaudin,et al.  Estimation of Product Category Sales Responsiveness to Allocated Shelf Space , 1998 .

[164]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[165]  Fred Raafat,et al.  Survey of Literature on Continuously Deteriorating Inventory Models , 1991 .

[166]  Peter I. Cowling,et al.  Hyperheuristics for managing a large collection of low level heuristics to schedule personnel , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[167]  Chak-Kuen Wong,et al.  An experimental analysis of local minima to improve neighbourhood search , 2003, Comput. Oper. Res..

[168]  Shanlin Yang,et al.  A new variable production scheduling strategy for deteriorating items with time-varying demand and partial lost sale , 2003, Comput. Oper. Res..

[169]  Timothy L. Urban An inventory-theoretic approach to product assortment and shelf-space allocation , 1998 .

[170]  C. V. Balan,et al.  An order-level lot size inventory model with inventory-level dependent demand and deterioration , 1997 .

[171]  P. Abad Optimal pricing and lot-sizing under conditions of perishability and partial backordering , 1996 .

[172]  Krzysztof Fleszar,et al.  New heuristics for one-dimensional bin-packing , 2002, Comput. Oper. Res..

[173]  Timothy L. Urban,et al.  A Deterministic Inventory System with an Inventory-Level-Dependent Demand Rate , 1988 .

[174]  Craig A. Tovey,et al.  Simulated, simulated annealing , 1988 .

[175]  Armin Scholl,et al.  Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem , 1997, Comput. Oper. Res..

[176]  Peter Ross,et al.  Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics , 2003, GECCO.

[177]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[178]  Sheldon Howard Jacobson,et al.  The Theory and Practice of Simulated Annealing , 2003, Handbook of Metaheuristics.