Predicting of Machine Perception for Automated Driving

In the case of highly-automated and fully-automated driving it is necessary for the vehicle itself to recognize the limitations of its machine perception, as well as the functional limitations of processing modules based on this perception to react adequately.

[1]  Paul Milgram,et al.  The Development of a Time-Related Measure to Describe Driving Strategy , 1984 .

[2]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Klaus Bengler,et al.  Ubernahmezeiten beim hochautomatisierten Autofahren , 2012 .

[4]  Y. Bar-Shalom Tracking and data association , 1988 .

[5]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[6]  Klaus C. J. Dietmayer,et al.  Consistent environmental modeling by use of occupancy grid maps, digital road maps, and multi-object tracking , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[7]  Christian Laugier,et al.  Bayesian Occupancy Filtering for Multitarget Tracking: An Automotive Application , 2006, Int. J. Robotics Res..

[8]  Hermann Winner,et al.  Handbuch Fahrerassistenzsysteme, Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort , 2009 .

[9]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[10]  Klaus C. J. Dietmayer,et al.  Using grid maps to reduce the number of false positive measurements in advanced driver assistance systems , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[11]  Michael Egmont-Petersen,et al.  Image processing with neural networks - a review , 2002, Pattern Recognit..

[12]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[13]  Jürgen Dickmann,et al.  Dynamic level of detail 3D occupancy grids for automotive use , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[14]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[15]  Klaus Bengler,et al.  “Take over!” How long does it take to get the driver back into the loop? , 2013 .

[16]  Darko Musicki,et al.  Joint integrated probabilistic data association: JIPDA , 2004 .

[17]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[18]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[19]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[20]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[21]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[22]  Michael Munz,et al.  Generisches Sensorfusionsframework zur gleichzeitigen Zustands- und Existenzschätzung für die Fahrzeugumfelderkennung , 2011 .

[23]  Ulrich Hofmann,et al.  Fusion of occupancy grid mapping and model based object tracking for driver assistance systems using laser and radar sensors , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[24]  Klaus C. J. Dietmayer,et al.  Generic grid mapping for road course estimation , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[25]  Klaus C. J. Dietmayer,et al.  Real-Time Multi-Object Tracking using Random Finite Sets , 2013, IEEE Transactions on Aerospace and Electronic Systems.