Advances in silicon carbide science and technology at the micro- and nanoscales

Advances in silicon carbide microfabrication and growth process optimization for silicon carbide nanostructures are ushering in new opportunities for microdevices capable of operation in a variety of demanding applications, involving high temperature, radiation, or corrosive environment. This review focuses on the materials science and processing technologies for silicon carbide thin films and low dimensional structures, and details recent progress in manufacturing technology, including deposition, metallization, and fabrication of semiconductor microdevices, with emphasis on sensor technology. The challenges remaining in developing silicon carbide as a mainstay materials platform are discussed throughout.

[1]  A. Leycuras,et al.  Etching nano-holes in silicon carbide using catalytic platinum nano-particles , 2006 .

[2]  Li Chen,et al.  A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications , 2007, IEEE Sensors Journal.

[3]  M. J. Kim,et al.  Heterogeneous silicon integration by ultra-high vacuum wafer bonding , 2003 .

[4]  R. Howe,et al.  Nitrogen doping of polycrystalline 3C–SiC films grown by single-source chemical vapor deposition , 2002 .

[5]  R. Horng,et al.  Plasma-deposited amorphous silicon carbide films for micromachined fluidic channels , 1999 .

[6]  M. Konagai,et al.  Observation of the photovoltaics effect from the solar cells using silicon quantum dots superlattice as a light absorption layer , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[7]  Wei Lin,et al.  A combined etching process toward robust superhydrophobic SiC surfaces , 2012, Nanotechnology.

[8]  R. Davis,et al.  Epitaxial Growth and Characterization of β ‐ SiC Thin Films , 1985 .

[9]  Jin Ming Chen,et al.  In Situ N 2 ‐ Doping of SiC Films Grown on Si(111) by Chemical Vapor Deposition from Organosilanes , 2000 .

[10]  D. Lim,et al.  Deposition of epitaxial silicon carbide films using high vacuum MOCVD method for MEMS applications , 2004 .

[11]  H. Möller,et al.  A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates , 1999 .

[12]  S. Mohney,et al.  Titanium and aluminum-titanium ohmic contacts to p-type SiC , 1997 .

[13]  Rosa Villa,et al.  Manufacturing and full characterization of silicon carbide-based multi-sensor micro-probes for biomedical applications , 2007, Microelectron. J..

[14]  Yossi Rosenwaks,et al.  Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy , 2009 .

[15]  J. Kelly,et al.  Photoelectrochemistry of 4H-SiC in KOH solutions , 2007 .

[16]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[17]  W. Mitchel,et al.  Comparison of Mechanical and Chemomechanical Polished SiC Wafers Using Photon Backscattering , 2000 .

[18]  M. Esashi,et al.  Deep reactive ion etching of silicon carbide , 2001 .

[19]  H. Matsunami Growth and application of cubic SiC , 1993 .

[20]  I. Adesida,et al.  High rate etching of SiC using inductively coupled plasma reactive ion etching in SF6-based gas mixtures , 1999 .

[21]  T. Kawashima,et al.  Distribution of active impurities in single silicon nanowires. , 2008, Nano letters.

[22]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[23]  Mehran Mehregany,et al.  Silicon carbide for MEMS and NEMS - an overview , 2002, Proceedings of IEEE Sensors.

[24]  Q. Shen,et al.  Preparation of zirconium pyrophosphate bonded silicon nitride porous ceramics , 2006 .

[26]  C. Carraro,et al.  Recent progress toward a manufacturable polycrystalline SiC surface micromachining technology , 2004, IEEE Sensors Journal.

[27]  M. Melloch,et al.  Formation of low resistivity ohmic contacts to n-type 3C-SiC , 2002 .

[28]  C. Berger,et al.  Highly ordered graphene for two dimensional electronics , 2006 .

[29]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[30]  J.-M. Themlin,et al.  HETEROEPITAXIAL GRAPHITE ON 6H-SIC(0001): INTERFACE FORMATION THROUGH CONDUCTION-BAND ELECTRONIC STRUCTURE , 1998 .

[31]  M. Mehregany,et al.  Silicon carbide for microelectromechanical systems , 2000 .

[32]  L. Di Cioccio,et al.  Silicon carbide on insulator formation using the Smart Cut process , 1996 .

[33]  R. Davis,et al.  Growth rate, surface morphology, and defect microstructures of β–SiC films chemically vapor deposited on 6H–SiC substrates , 1989 .

[34]  M. Schmidt Wafer-to-wafer bonding for microstructure formation , 1998, Proc. IEEE.

[35]  Rosa Villa,et al.  A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues , 2006, Biomedical microdevices.

[36]  R. Howe,et al.  Effect of illlumination on thermionic emission from microfabricated silicon carbide structures , 2011, International Solid-State Sensors, Actuators and Microsystems Conference.

[37]  Mehran Mehregany,et al.  Etching of 3C-SiC using CHF3/O2 and CHF3/O2/He plasmas at 1.75 Torr , 1998 .

[38]  M. Schieber,et al.  The growth of hetero-epitaxial SiC films by pyrolysis of various alkyl-silicon compounds , 1974 .

[39]  C Berger,et al.  Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. , 2007, Physical review letters.

[40]  M. Mehregany,et al.  Chemical Mechanical Polishing of Cubic Silicon Carbide Films Grown on Si(100) Wafers , 2002 .

[41]  D. Tsai,et al.  Low pressure chemical vapor deposition of silicon carbide from dichlorosilane and acetylene , 2000 .

[42]  C. Berger,et al.  Epitaxial graphene , 2007, 0704.0285.

[43]  C. Pham‐Huu,et al.  The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential , 2001 .

[44]  Polycrystalline silicon carbide as a substrate material for reducing adhesion in MEMS , 2006 .

[45]  B. Jamshidi,et al.  Corrosion Enhanced Capacitive Strain Gauge at 370°C , 2007, 2007 IEEE Sensors.

[46]  S. M. Spearing,et al.  Materials issues in microelectromechanical systems (MEMS) , 2000 .

[47]  S. Saddow,et al.  Effects of substrate surface preparation on chemical vapor deposition growth of 4H-SiC epitaxial layers , 2001 .

[48]  C. Musil,et al.  Surface smoothing and patterning of SiC by focused ion beams , 1998 .

[49]  Ling Pan,et al.  Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. , 2005, Nano letters.

[50]  Philip X.-L. Feng,et al.  Focused Ion-Beam (FIB) Nanomachining of Silicon Carbide (SiC) Stencil Masks for Nanoscale Patterning , 2012 .

[51]  F. Ren,et al.  Improved Ni based composite Ohmic contact to n-SiC for high temperature and high power device applications , 2000 .

[52]  A. Fukumoto First‐Principles Calculations of Impurity States in 3C‐SiC , 1997 .

[53]  A. Kurtz,et al.  Photoelectrochemical conductivity selective etch stops for SiC , 1992 .

[54]  R. Johnson,et al.  Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review , 1996 .

[55]  M. Eickhoff,et al.  Selective growth of high-quality 3C-SiC using a SiO2 sacrificial-layer technique , 1999 .

[56]  W. J. Choyke,et al.  Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(0001̄) , 1986 .

[57]  C. Berger,et al.  Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide , 2011, Proceedings of the National Academy of Sciences.

[58]  Carl-Mikael Zetterling,et al.  Process technology for silicon carbide devices , 2002 .

[59]  Phillip John,et al.  The oxidation of (100) textured diamond , 2002 .

[60]  J. Groeneweg,et al.  Porous SiC as an ammonia sensor , 2004, Proceedings of IEEE Sensors, 2004..

[61]  M. Mehregany,et al.  Electromechanical Computing at 500°C with Silicon Carbide , 2010, Science.

[62]  Xiaolong Chen,et al.  Interface metallization and electrical characterization of Ta–Pt multilayers on n-type SiC , 2008 .

[63]  E. Bano,et al.  3C-Silicon Carbide Nanowire FET: An Experimental and Theoretical Approach , 2008, IEEE Transactions on Electron Devices.

[64]  R. Johnson,et al.  A hybrid silicon carbide differential amplifier for 350 degrees C operation , 1993 .

[65]  Steven L. Garverick,et al.  Extreme temperature 6H‐SiC JFET integrated circuit technology , 2009 .

[66]  A. Steckl,et al.  Characterization of 3C–SiC crystals grown by thermal decomposition of methyltrichlorosilane , 1996 .

[67]  c-Si surface passivation for photovoltaic applications by means of antireflective amorphous silicon carbide layers , 2007, 2007 Spanish Conference on Electron Devices.

[68]  F. Sánchez-Bajo,et al.  X-ray powder diffraction analysis of a silicon carbide-based ceramic , 2001 .

[69]  M. Mehregany,et al.  Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications , 2006, IEEE Sensors Journal.

[70]  M. Skowronski,et al.  Characterization of Polishing‐Related Surface Damage in (0001) Silicon Carbide Substrates , 1995 .

[71]  C. Zorman Silicon carbide as a material for biomedical microsystems , 2009, 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS.

[72]  R. Cingolani,et al.  Synthesis of silicon carbide thin films by ion beam sputtering , 1998 .

[73]  K. Jacobson Growth, Texture, and Surface Morphology of SiC Layers , 1971 .

[74]  Mehran Mehregany,et al.  Monocrystalline silicon carbide nanoelectromechanical systems , 2001 .

[75]  Mehran Mehregany,et al.  Roughness Reduction of 3C‐SiC Surfaces Using SiC‐Based Mechanical Polishing Slurries , 1999 .

[76]  Cubic silicon carbide surface reconstructions and Si (C) nanostructures at the atomic scale , 2002 .

[77]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[78]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[79]  A. Papon,et al.  High-temperature ion beam synthesis of cubic SiC , 1990 .

[80]  J. W. Schultze,et al.  Optimization of passivation layers for corrosion protection of silicon-based microelectrode arrays , 2000 .

[81]  S. Ha,et al.  Assessment of Polishing-Related Surface Damage in Silicon Carbide , 2002 .

[82]  Dale M. Brown,et al.  SiC flame sensors for gas turbine control systems , 1998 .

[83]  Debbie G. Senesky,et al.  MEMS Strain Sensors for Intelligent Structural Systems , 2011 .

[84]  Werner Wesch,et al.  Silicon carbide: Synthesis and processing , 1996 .

[85]  R. Howe,et al.  Transformer coupled plasma etching of 3C-SiC films using fluorinated chemistry for microelectromechanical systems applications , 2004 .

[86]  C. Carraro,et al.  Diameter-dependent modulation and polarization anisotropy in raman scattering from individual nanowires , 2006 .

[87]  R. Maboudian,et al.  Growth of Epitaxial 3C-SiC Films on Si(100) via Low Temperature SiC Buffer Layer , 2010 .

[88]  Robert G. Azevedo,et al.  Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments , 2009 .

[89]  Elizabeth C. Dickey,et al.  Effect of diborane on the microstructure of boron-doped silicon nanowires , 2005 .

[90]  R. Ghosh,et al.  SiC field-effect devices operating at high temperature , 2005 .

[91]  Robert F. Davis,et al.  A critical review of ohmic and rectifying contacts for silicon carbide , 1995 .

[92]  O. Ambacher,et al.  Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications , 2007 .

[93]  Xiaodong Li,et al.  Micro/nanoscale mechanical and tribological characterization of SiC for orthopedic applications. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[94]  A. Steckl,et al.  Growth of crystalline 3C‐SiC on Si at reduced temperatures by chemical vapor deposition from silacyclobutane , 1993 .

[95]  M. Mehregany,et al.  Low stress polycrystalline SiC thin films suitable for MEMS applications , 2011 .

[96]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[97]  L. Nyborg,et al.  Study of reaction process on Ni/4H–SiC contact , 2006 .

[98]  H. Zacharias,et al.  Functionalization of amorphous SiO₂ and 6H-SiC(0001) surfaces with benzo[ghi]perylene-1,2-dicarboxylic anhydride via an APTES linker. , 2012, Small.

[99]  Mehran Mehregany,et al.  A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement , 2008 .

[100]  Ling Zhou,et al.  Chemomechanical Polishing of Silicon Carbide , 1997 .

[101]  K. Schroën,et al.  Covalent attachment of organic monolayers to silicon carbide surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[102]  H. Hobert,et al.  Maskless sub-μm patterning of silicon carbide using a focused ion beam in combination with wet chemical etching , 1998 .

[103]  A. Pisano,et al.  Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators , 2006, Journal of Microelectromechanical Systems.

[104]  C. Zorman,et al.  Micro‐ and nanomechanical structures for silicon carbide MEMS and NEMS , 2008 .

[105]  R. Howe,et al.  Nickel and platinum ohmic contacts to polycrystalline 3C-silicon carbide , 2007 .

[106]  J. Morante,et al.  β-SiC on SiO2 formed by ion implantation and bonding for micromechanics applications , 1999 .

[107]  R. Cheung,et al.  A review of silicon carbide development in MEMS applications , 2009 .

[108]  Jinlin Huang,et al.  Diameter-dependent dopant location in silicon and germanium nanowires , 2009, Proceedings of the National Academy of Sciences.

[109]  L. Lauhon,et al.  Correlating dopant distributions and electrical properties of boron-doped silicon nanowires , 2009 .

[110]  Richard M. Osgood,et al.  Dopant-selective etch stops in 6H and 3C SiC , 1997 .

[111]  P. Machac,et al.  Origin of ohmic behavior in Ni, Ni2Si and Pd contacts on n-type SiC , 2010 .

[112]  R. Howe,et al.  Electrical Characterization of n-Type Polycrystalline 3C-Silicon Carbide Thin Films Deposited by 1,3-Disilabutane , 2006 .

[113]  Jinli Zhang,et al.  Synthesis and field emission properties of silicon carbide nanobelts with a median ridge , 2012 .

[114]  R. Maboudian,et al.  Tribological Impact of SiC Encapsulation of Released Polycrystalline Silicon Microstructures , 2004 .

[115]  Mehran Mehregany,et al.  SiC MEMS: Opportunities and challenges for applications in harsh environments , 1999 .

[116]  Charles M. Lieber,et al.  Synthesis and characterization of carbide nanorods , 1995, Nature.

[117]  M. Stutzmann,et al.  Structured Polymer Brushes on Silicon Carbide , 2010 .

[118]  D. Zhuang,et al.  Wet etching of GaN, AlN, and SiC : a review , 2005 .

[119]  R. Howe,et al.  Stress control of polycrystalline 3C-SiC films in a large-scale LPCVD reactor using 1,3-disilabutane and dichlorosilane as precursors , 2006 .

[120]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[121]  Robert S. Okojie,et al.  Reliability assessment of Ti/TaSi2/Pt ohmic contacts on SiC after 1000 h at 600 °C , 2002 .

[122]  M. Mehregany,et al.  A novel SiC on insulator technology using wafer bonding , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[123]  G. Kotzar,et al.  Evaluation of MEMS materials of construction for implantable medical devices. , 2002, Biomaterials.

[124]  J. E. Crombeen,et al.  LEED and Auger electron observations of the SiC(0001) surface , 1975 .

[125]  Mehran Mehregany,et al.  High temperature ohmic contacts to 3C–silicon carbide films , 1998 .

[126]  S. G. Bishop,et al.  Donor binding energies determined from temperature dependence of photoluminescence spectra in undoped and aluminum-doped beta SiC films , 1988 .

[127]  H. Masuda,et al.  AlGaAs/GaAs HBTs for 10-Gb/s ICs using a new base ohmic contact fabrication process , 1993 .

[128]  M. Bozack,et al.  Surface Studies on SiC as Related to Contacts , 1997 .

[129]  Three-dimensional crystalline SiC nanowire flowers , 2004 .

[130]  N. Yang,et al.  Nanocrystalline 3C-SiC electrode for biosensing applications. , 2011, Analytical chemistry.

[131]  Y. H. Kahng,et al.  The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study , 2009 .

[132]  R. Howe,et al.  Fully-differential poly-SiC Lame mode resonator and checkerboard filter , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[133]  A. Kurtz,et al.  /spl alpha/(6H)-SiC pressure sensors for high temperature applications , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[134]  Peidong Yang,et al.  Self-transducing silicon nanowire electromechanical systems at room temperature. , 2008, Nano letters.

[135]  G. Sberveglieri,et al.  Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC devices , 2005 .

[136]  D. Planson,et al.  Chemical contribution of oxygen to silicon carbide plasma etching kinetics in a distributed electron cyclotron resonance (DECR) reactor , 1999 .

[137]  D.G. Senesky,et al.  Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review , 2009, IEEE Sensors Journal.

[138]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[139]  Xinglong Wu,et al.  Tunable electroluminescence from polymer-passivated 3C-SiC quantum dot thin films , 2012 .

[140]  Andrew J. Steckl,et al.  A Review of SiC Reactive Ion Etching in Fluorinated Plasmas , 1997 .

[141]  W. Mönch,et al.  Dynamical properties of 3C-, 4H-, and 6HSiC surfaces , 1998 .

[142]  Gaurav S. Sukhatme,et al.  Connecting the Physical World with Pervasive Networks , 2002, IEEE Pervasive Comput..

[143]  Heon-Jin Choi,et al.  Optical and electrical transport properties in silicon carbide nanowires , 2004 .

[144]  Structural properties of the multilayer graphene/4H-SiC(0001) system as determined by surface x-ray diffraction , 2007, cond-mat/0702540.

[145]  G. Carter,et al.  Ion-beam-assisted deposition of Si-carbide films , 1995 .

[146]  N. Ohtani,et al.  Etching Kinetics of α-SiC Single Crystals by Molten KOH , 1997 .

[147]  M. Iwami Silicon carbide: fundamentals , 2001 .

[148]  H. Matsunami,et al.  Chemical Vapor Deposition of Single Crystalline β ‐ SiC Films on Silicon Substrate with Sputtered SiC Intermediate Layer , 1980 .

[149]  W. Maszara,et al.  Bonding of silicon wafers for silicon‐on‐insulator , 1988 .

[150]  N. Ohtani,et al.  Mechanism of Molten KOH Etching of SiC Single Crystals: Comparative Study with Thermal Oxidation , 1999 .

[151]  K. Schroën,et al.  Covalently attached organic monolayers on SiC and SixN4 surfaces: formation using UV light at room temperature. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[152]  M. Eickhoff,et al.  Heteroepitaxial growth of 3C-SiC on SOI for sensor applications , 1999 .

[153]  A. Spetz,et al.  Surface functionalization and biomedical applications based on SiC , 2007 .

[154]  Volker Schmidt,et al.  Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties , 2009, Advanced materials.

[155]  R. Davis,et al.  Deposition and doping of silicon carbide by gas-source molecular beam epitaxy , 1997 .

[156]  R. Kaplan Surface structure and composition of β- and 6H-SiC , 1989 .

[157]  Byung-Teak Lee,et al.  MICROSTRUCTURAL INVESTIGATION OF LOW TEMPERATURE CHEMICAL VAPOR DEPOSITED 3C-SIC/SI THIN FILMS USING SINGLE-SOURCE PRECURSORS , 1999 .

[158]  A. Kvit,et al.  SiC TO SiC WAFER BONDING , 2002 .

[159]  J. Kelly,et al.  Electrochemistry of anodic etching of 4H and 6H–SiC in fluoride solution of pH 3 , 2009 .

[160]  J. Camassel,et al.  SiC materials: a semiconductor family for the next century , 2000 .

[161]  M. Rodriguez,et al.  Formation of stress-controlled, highly textured, α-SiC thin films at 950 °C , 2012 .

[162]  F. Reidinger,et al.  Single‐crystalline, epitaxial cubic SiC films grown on (100) Si at 750 °C by chemical vapor deposition , 1992 .

[163]  R. Levy,et al.  Low Pressure Chemical Vapor Deposition of Silicon Carbide from Ditertiarybutylsilane , 1993 .

[164]  J. Sturm,et al.  Low temperature chemical vapor deposition growth of β-SiC on (100) Si using methylsilane and device characteristics , 1997 .

[165]  Hailong Liu,et al.  Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation , 2012 .

[166]  R. Maboudian,et al.  Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications , 2005 .

[167]  Kevin T. Kornegay,et al.  Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers , 2003 .

[168]  P. Martin,et al.  Ion-based methods for optical thin film deposition , 1986 .

[169]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[170]  B. J. Baliga,et al.  A novel method for etching trenches in silicon carbide , 1995 .

[171]  Dongsan Kim,et al.  A study on a platinum–silicon carbide Schottky diode as a hydrogen gas sensor , 2000 .

[172]  A. Pisano,et al.  Aluminum nitride as a masking material for the plasma etching of silicon carbide structures , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[173]  R. Howe,et al.  Single-Source Chemical Vapor Deposition of 3 C ­ SiC Films in a LPCVD Reactor I. Growth, Structure, and Chemical Characterization , 2004 .

[174]  H. Gassen,et al.  A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane , 1971 .

[175]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[176]  Mehran Mehregany,et al.  Silicon carbide MEMS for harsh environments , 1998, Proc. IEEE.

[177]  N. G. Wright,et al.  SiC sensors: a review , 2007 .

[178]  Peidong Yang,et al.  Growth and Electrical Characteristics of Platinum‐Nanoparticle‐Catalyzed Silicon Nanowires , 2007 .

[179]  J. Teichert,et al.  Focused ion beam sputtering investigations on SiC , 2001 .

[180]  R. Howe,et al.  High-selectivity etching of polycrystalline 3C-SiC films using HBr-based transformer coupled plasma , 2003 .

[181]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[182]  T. Uemoto Reduction of Ohmic Contact Resistance on n-Type 6H-SiC by Heavy Doping , 1995 .

[183]  E. Riis,et al.  0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser , 2003, IEEE Photonics Technology Letters.

[184]  Pasqualina M. Sarro,et al.  Silicon carbide as a new MEMS technology , 2000 .

[185]  J. Provine,et al.  Characterization of Encapsulated Micromechanical Resonators Sealed and Coated With Polycrystalline SiC , 2010, Journal of Microelectromechanical Systems.

[186]  Elizabeth C. Dickey,et al.  Structural and electrical properties of trimethylboron-doped silicon nanowires , 2004 .

[187]  A. Fleischman,et al.  Epitaxial growth of 3C–SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition , 1995 .

[188]  Roger T. Howe,et al.  A low-temperature CVD process for silicon carbide MEMS , 2002 .

[189]  Stephen E. Saddow,et al.  Advances in silicon carbide processing and applications , 2004 .

[190]  A. V. Fedorov,et al.  Departure from the conical dispersion in epitaxial graphene , 2008, 0801.3862.

[191]  R. Maboudian,et al.  Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor , 2012 .

[192]  H. Nagasawa,et al.  Mechanisms of SiC growth by alternate supply of SiH2Cl2 and C2H2 , 1994 .

[193]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[194]  A. Spetz,et al.  Cosputtered Metal and$hboxSiO_2$Layers for Use in Thick-Film MISiC$hboxNH_3$Sensors , 2006, IEEE Sensors Journal.

[195]  Yung-Yu Chen,et al.  AlN/3C–SiC Composite Plate Enabling High‐Frequency and High‐Q Micromechanical Resonators , 2012, Advanced materials.

[196]  M. Stutzmann,et al.  Electrical passivation and chemical functionalization of SiC surfaces by chlorine termination , 2011 .

[197]  Roya Maboudian,et al.  Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). , 2008, Physical review letters.

[198]  Roya Maboudian,et al.  Lubrication of polycrystalline silicon MEMS via a thin silicon carbide coating , 2013 .

[199]  V. Radeka,et al.  Radiation effects on Si-JFET devices for front-end electronics , 1996 .

[200]  V. Radmilović,et al.  Formation of fiber texture in β-SiC films deposited on Si(100) substrates , 2007 .

[201]  Pasqualina M. Sarro,et al.  Low-stress PECVD SiC thin films for IC-compatible microstructures , 1998 .

[202]  R. Howe,et al.  Room-Temperature Wet Etching of Polycrystalline and Nanocrystalline Silicon Carbide Thin Films with HF and HNO3 , 2009 .

[203]  Andreas Fissel,et al.  Artificially layered heteropolytypic structures based on SiC polytypes: molecular beam epitaxy, characterization and properties , 2003 .

[204]  K. Zekentes,et al.  SiC nanowires: material and devices , 2011 .

[205]  S. Han,et al.  Effect of Interfacial Reactions on Electrical Properties of Ni Contacts on Lightly Doped n-Type 4H-SiC , 2002 .

[206]  Wolfgang R. Fahrner,et al.  Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications , 2001, IEEE Trans. Ind. Electron..

[207]  V. Bermudez Adsorption and co-adsorption of boron and oxygen on ordered α-SiC surfaces , 1995 .

[208]  Philip Kim,et al.  Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices , 2004, cond-mat/0410314.

[209]  F. Tournus,et al.  Playing with carbon and silicon at the nanoscale. , 2007, Nature materials.

[210]  Z. Hou,et al.  Field-effect transistor based on /spl beta/-SiC nanowire , 2006, IEEE Electron Device Letters.

[211]  A. Steckl,et al.  Silicon Carbide Wafer Bonding , 1995 .

[212]  A. J. Pang,et al.  Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition , 2008 .

[213]  Subhas Chandra Mukhopadhyay,et al.  New developments in sensing technology for structural health monitoring , 2011 .

[214]  P. Nellist,et al.  Doping-dependent nanofaceting on silicon nanowire surfaces , 2009 .

[215]  John R. Williams,et al.  The Physics of Ohmic Contacts to SiC , 1997 .

[216]  Ishwara B. Bhat,et al.  Electro-chemical mechanical polishing of silicon carbide , 2004 .

[217]  Wei-Cheng Lien,et al.  AlN thin films grown on epitaxial 3C–SiC (100) for piezoelectric resonant devices , 2010 .

[218]  Fang Liu,et al.  Enhanced Ohmic contact via graphitization of polycrystalline silicon carbide , 2010 .

[219]  Gianluca Piazza,et al.  Two-port stacked piezoelectric aluminum nitride contour-mode resonant MEMS , 2007 .

[220]  M. Shur,et al.  Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide , 1991, Proc. IEEE.

[221]  R. Howe,et al.  Microfabricated silicon carbide thermionic energy converter for solar electricity generation , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[222]  Masayoshi Esashi,et al.  Silicon carbide micro-reaction-sintering using micromachined silicon molds , 2001 .

[223]  R. Moss,et al.  Microhardness and other properties of hydrogenated amorphous silicon carbide thin films formed by plasma-enhanced chemical vapor deposition , 1983 .

[224]  C. Ribbing,et al.  Optical Excitation of Surface Phonon Polaritons in Silicon Carbide by a Hole Array Fabricated by a Focused Ion Beam , 2007 .

[225]  D.G. Jones,et al.  Low temperature ion beam sputter deposition of amorphous silicon carbide for wafer-level vacuum sealing , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[226]  Mark C. Wood,et al.  Approach to optimizing n-SiC Ohmic contacts by replacing the original contacts with a second metal , 2006 .

[227]  Shuvo Roy,et al.  Fabrication and characterization of polycrystalline SiC resonators , 2002 .

[228]  A. Kohyama,et al.  Single‐Crystal SiC Nanowires with a Thin Carbon Coating for Stronger and Tougher Ceramic Composites , 2005 .

[229]  M. Mehregany,et al.  Use of deposition pressure to control residual stress in polycrystalline SiC films , 2004 .

[230]  H. Friedrich,et al.  Biomimetic Mineralization of Calcium Phosphate on a Functionalized Porous Silicon Carbide Biomaterial , 2012 .

[231]  S. Nishino,et al.  Low‐Temperature Growth of 3 C ‐ SiC on Si Substrate by Chemical Vapor Deposition Using Hexamethyldisilane as a Source Material , 1992 .

[232]  A. Zayats,et al.  Fabrication of nano-scale optical patterns in amorphous silicon carbide with focused ion beam writing , 2005 .

[233]  M. Bozack,et al.  High‐temperature ohmic contact to n‐type 6H‐SiC using nickel , 1995 .

[234]  Phillip B. Abel,et al.  Surface morphology of silicon carbide epitaxial films , 1995 .

[235]  Albert P. Pisano,et al.  Growth and characterization of nitrogen-doped polycrystalline 3C-SiC thin films for harsh environment MEMS applications , 2010 .

[236]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[237]  R. Howe,et al.  Smart-cut layer transfer of single-crystal SiC using spin-on-glass , 2012 .

[238]  Liang-Yu Chen,et al.  Stable Electrical Operation of 6H–SiC JFETs and ICs for Thousands of Hours at 500 $^{\circ}\hbox{C}$ , 2008, IEEE Electron Device Letters.

[239]  W. J. Choyke,et al.  Nanoporous SiC: A Candidate Semi-Permeable Material for Biomedical Applications , 2004, Biomedical microdevices.

[240]  R. Howe,et al.  Characterization of polycrystalline 3C-SiC films deposited from the precursors 1,3-disilabutane and dichlorosilane , 2008 .

[241]  Chih-Fang Huang,et al.  Photoelectrochemical etching to fabricate single-crystal SiC MEMS for harsh environments , 2011 .

[242]  Masayoshi Esashi,et al.  Surface micromachined AlN thin film 2 GHz resonator for CMOS integration , 2005 .

[243]  Takashi Goto,et al.  High-Speed Epitaxial Growth of β-SiC Film on Si(111) Single Crystal by Laser Chemical Vapor Deposition , 2012 .

[244]  R. Maboudian,et al.  Residual stress characterization of polycrystalline 3C-SiC films on Si(100) deposited from methylsilane , 2009 .

[245]  Darrin J. Young,et al.  Single crystal 6H-SiC MEMS fabrication based on smart-cut technique , 2005 .

[246]  Hiroshi Harima,et al.  Raman Investigation of SiC Polytypes , 1997 .

[247]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[248]  A. O'Neill,et al.  Formation and role of graphite and nickel silicide in nickel based ohmic contacts to n-type silicon carbide , 2005 .

[249]  Seokwoo Jeon,et al.  Microstructure and mechanical properties of SiC-nanowire-augmented tungsten composites , 2011 .

[250]  M. Stutzmann,et al.  Biocompatibility Assessment of SiC Surfaces After Functionalization with Self Assembled Organic Monolayers , 2009 .

[251]  U. Gösele,et al.  Empirical molecular dynamic study of SiC(0001) surface reconstructions and bonded interfaces , 2000 .