Estimation of Hidden Markov Models parameters using differential evolution

Hidden Markov Models (HMMs) have been successfully applied to different modelling and classification problems from different areas over the recent years. An important step in using HMMs is the initialisation of the parameters of the model as the subsequent learning of HMM’s parameters will be dependent on these values. This initialisation should take into account the knowledge about the addressed problem and also optimisation techniques to estimate the best initial parameters given a cost function, and consequently, to estimate the best log-likelihood. This paper proposes the initialisation of Hidden Markov Models parameters using the optimisation algorithm Differential Evolution with the aim to obtain the best log-likelihood.

[1]  Monson H. Hayes,et al.  Face detection and recognition using hidden Markov models , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[2]  W. H. Laverty,et al.  Simulation of hidden Markov models with EXCEL , 2002 .

[3]  Paul D. Gader,et al.  Generalized hidden Markov models. I. Theoretical frameworks , 2000, IEEE Trans. Fuzzy Syst..

[4]  Nam Soo Kim,et al.  Maximum a posteriori adaptation of HMM parameters based on speaker space projection , 2004, Speech Commun..

[5]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[6]  Daniel P. W. Ellis,et al.  Selection, parameter estimation, and discriminative training of hidden Markov models for general audio modeling , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[7]  P. Gader,et al.  Generalized Hidden Markov Models — Part I : Theoretical Frameworks , 2008 .

[8]  Padhraic Smyth,et al.  Clustering Sequences with Hidden Markov Models , 1996, NIPS.

[9]  K. C. Jung,et al.  Continuous HMM applied to quantization of on-line Korean character spaces , 2000, Pattern Recognit. Lett..

[10]  E. Seidemann,et al.  Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Xiaodong Li,et al.  Efficient differential evolution using speciation for multimodal function optimization , 2005, GECCO '05.

[12]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[13]  Manuele Bicego,et al.  A Hidden Markov Model-Based Approach to Sequential Data Clustering , 2002, SSPR/SPR.

[14]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[15]  P C Molenaar,et al.  Confidence intervals for hidden Markov model parameters. , 2000, The British journal of mathematical and statistical psychology.

[16]  Arnon D. Cohen,et al.  Hidden Markov models in biomedical signal processing , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[17]  Mekapati Srinivas,et al.  GLOBAL OPTIMIZATION OF BENCHMARK AND PHASE EQUILIBRIUM PROBLEMS USING DIFFERENTIAL EVOLUTION , 2006 .

[18]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[19]  Krishna S. Nathan,et al.  Initialization of hidden Markov models for unconstrained on-line handwriting recognition , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[20]  Daniel P. W. Ellis,et al.  SELECTION , PARAMETER ESTIMATION AND DISCRIMINATIVE TRAINING OF HIDDEN MARKOV MODELS FOR GENERIC ACOUSTIC MODELING , .

[21]  Brian C. Lovell,et al.  Comparing and evaluating HMM ensemble training algorithms using train and test and condition number criteria , 2003, Formal Pattern Analysis & Applications.

[22]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.