Nonlinear Diffusion Through Large Complex Networks Containing Regular Subgraphs

Transport through generalized trees is considered. Trees contain the simple nodes and supernodes, either well-structured regular subgraphs or those with many triangles. We observe a superdiffusion for the highly connected nodes while it is Brownian for the rest of the nodes. Transport within a supernode is affected by the finite size effects vanishing as N → ∞. For the even dimensions of space, d = 2, 4, 6,..., the finite size effects break down the perturbation theory at small scales and can be regularized by using the heat-kernel expansion.

[1]  B. Dewitt,et al.  Quantum field theory in curved spacetime , 1975 .

[2]  Bryce S. DeWitt,et al.  Dynamical theory of groups and fields , 1964 .

[3]  Danilo Sergi Random graph model with power-law distributed triangle subgraphs. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  K. Symanzik SCHRODINGER REPRESENTATION AND CASIMIR EFFECT IN RENORMALIZABLE QUANTUM FIELD THEORY , 1981 .

[5]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Field-theoretic renormalization group for a nonlinear diffusion equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[8]  Liu,et al.  Anomalous dimensions and the renormalization group in a nonlinear diffusion process. , 1990, Physical review letters.

[9]  Parker,et al.  Explicit curvature dependence of coupling constants. , 1985, Physical review. D, Particles and fields.

[10]  Ph. Blanchard,et al.  The “Cameo Principle” and the Origin of Scale-Free Graphs in Social Networks , 2004 .

[11]  村井 康久 B. S. DeWitt: Dynamical Theory of Groups and Fields (Document on Modern Physics), Gordon and Breach, New York, 1965, 248頁, 16.0×23.5cm, $5.95. , 1966 .

[12]  Antti Kupiainen,et al.  Renormalization Group and Asymptotics of Solutions of Nonlinear Parabolic Equations , 1993, chao-dyn/9306008.

[13]  Universality in random-walk models with birth and death. , 1995, Physical review letters.

[14]  The effective action and the renormalization group equation in curved space-time , 1983 .

[15]  C. Loan The ubiquitous Kronecker product , 2000 .

[16]  B. S'evennec Multiplicité du spectre des surfaces : une approche topologique , 1994 .

[17]  L. Parker,et al.  Feynman propagator in curved spacetime: A momentum-space representation , 1979 .

[18]  Pierre Collet,et al.  The Number of Large Graphs with a Positive Density of Triangles , 2002 .

[19]  J. Xin,et al.  Global large time self-similarity of a thermal-diffusive combustion system with critical nonlinearity , 1995 .

[20]  Jean-Pierre Eckmann,et al.  Curvature of co-links uncovers hidden thematic layers in the World Wide Web , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Blanchard,et al.  Epidemic spreading in a variety of scale free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Mathieu S. Capcarrère,et al.  Necessary conditions for density classification by cellular automata. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  A. N. Vasiliev,et al.  The field theoretic renormalization group in fully developed turbulence , 1999 .

[24]  C. De Dominicis,et al.  TECHNIQUES DE RENORMALISATION DE LA THÉORIE DES CHAMPS ET DYNAMIQUE DES PHÉNOMÈNES CRITIQUES , 1976 .

[25]  李幼升,et al.  Ph , 1989 .

[26]  B. M. Fulk MATH , 1992 .

[27]  D. Durian,et al.  Angular distribution of diffusely transmitted light. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Zanette,et al.  Thermodynamics of anomalous diffusion. , 1995, Physical review letters.

[29]  P. Buser Cubic graphs and the first eigenvalue of a Riemann surface , 1978 .

[30]  Cassi,et al.  Random walks on bundled structures. , 1996, Physical review letters.

[31]  Prakash Panangaden,et al.  Scaling behavior of interacting quantum fields in curved spacetime , 1982 .

[32]  Peter Buser,et al.  On the bipartition of graphs , 1984, Discret. Appl. Math..

[33]  Gaurav S. Sukhatme,et al.  An implicit-based haptic rendering technique , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  G. Besson Sur la multiplicité des valeurs propres du laplacien , 1987 .

[35]  D. Volchenkov,et al.  On the convergence of multiplicative branching processes in dynamics of fluid flows , 2006, cond-mat/0606364.

[36]  H. Janssen,et al.  Renormalized field theory of critical dynamics , 1976 .

[37]  J. Balakrishnan Spatial curvature effects on molecular transport by diffusion. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  John Kenneth Salisbury,et al.  Haptic rendering: programming touch interaction with virtual objects , 1995, I3D '95.

[39]  Paul C. Martin,et al.  Statistical Dynamics of Classical Systems , 1973 .

[40]  M. B. Hastings An $\mathsf{\epsilon}$-expansion for small-world networks , 2004 .

[41]  Random walks on disordered networks , 1996, cond-mat/9612062.

[42]  P. Gilkey The spectral geometry of a Riemannian manifold , 1975 .

[43]  H. Janssen,et al.  On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties , 1976 .

[44]  R. Monasson Diffusion, localization and dispersion relations on “small-world” lattices , 1999 .

[45]  Statistical models on spherical geometries. , 1995, Physical review letters.

[46]  W. Stewart,et al.  The Kronecker product and stochastic automata networks , 2004 .

[47]  J. Rossignac,et al.  Localized bi-Laplacian Solver on a Triangle Mesh and Its Applications , 2004 .

[48]  Antti Kupiainen,et al.  Renormalization Group and the Ginzburg-Landau equation , 1992 .

[49]  Limoge,et al.  Temperature behavior of tracer diffusion in amorphous materials: A random-walk approach. , 1990, Physical review letters.

[50]  G Korniss,et al.  Roughness scaling for Edwards-Wilkinson relaxation in small-world networks. , 2004, Physical review letters.