LEAN mapping

We introduce Linear Efficient Antialiased Normal (LEAN) Mapping, a method for real-time filtering of specular highlights in bump and normal maps. The method evaluates bumps as part of a shading computation in the tangent space of the polygonal surface rather than in the tangent space of the individual bumps. By operating in a common tangent space, we are able to store information on the distribution of bump normals in a linearly-filterable form compatible with standard MIP and anisotropic filtering hardware. The necessary textures can be computed in a preprocess or generated in real-time on the GPU for time-varying normal maps. The method effectively captures the bloom in highlight shape as bumps become too small to see, and will even transform bump ridges into anisotropic shading. Unlike even more expensive methods, several layers can be combined cheaply during surface rendering, with per-pixel blending. Though the method is based on a modified Ward shading model, we show how to map between its parameters and those of a standard Blinn-Phong model for compatibility with existing art assets and pipelines, and demonstrate that both models produce equivalent results at the largest MIP levels.

[1]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[2]  Andrew Lauritzen,et al.  Variance shadow maps , 2006, I3D '06.

[3]  Pierre Poulin,et al.  A model for anisotropic reflection , 1990, SIGGRAPH.

[4]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[5]  Mark S. Peercy,et al.  Efficient bump mapping hardware , 1997, SIGGRAPH.

[6]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[7]  Paul S. Heckbert,et al.  Fundamentals of Texture Mapping and Image Warping , 1989 .

[8]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[9]  Lance Williams,et al.  Pyramidal parametrics , 1983, SIGGRAPH.

[10]  Christophe Schlick,et al.  A Customizable Reflectance Model for Everyday Rendering , 1993 .

[11]  R. Ramamoorthi,et al.  Frequency domain normal map filtering , 2007, SIGGRAPH 2007.

[12]  Hans-Peter Seidel,et al.  Towards interactive bump mapping with anisotropic shift-variant BRDFs , 2000, Workshop on Graphics Hardware.

[13]  Nelson L. Max,et al.  Smooth transitions between bump rendering algorithms , 1993, SIGGRAPH.

[14]  Marc Olano,et al.  Normal Distribution Mapping , 1997 .

[15]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[16]  Dinesh Manocha,et al.  Appearance-preserving simplification , 1998, SIGGRAPH.

[17]  Mark J. Kilgard A practical and robust bump-mapping technique for today’s GPU’s , 2010 .

[18]  James T. Kajiya,et al.  Anisotropic reflection models , 1985, SIGGRAPH.

[19]  Richard F. Lyon Phong Shading Reformulation for Hardware Renderer Simplification , 1993 .

[20]  Joel McCormack,et al.  Feline: fast elliptical lines for anisotropic texture mapping , 1999, SIGGRAPH.

[21]  James F. Blinn,et al.  Simulation of wrinkled surfaces , 1978, SIGGRAPH.

[22]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[23]  Ares Lagae,et al.  Procedural noise using sparse Gabor convolution , 2009, SIGGRAPH '09.

[24]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[25]  Andreas Schilling,et al.  Towards real-time photorealistic rendering: challenges and solutions , 1997, HWWS '97.

[26]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[27]  Katsushi Ikeuchi,et al.  Multiple light sources and reflectance property estimation based on a mixture of spherical distributions , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[28]  Michael Toksvig Mipmapping Normal Maps , 2005, J. Graph. Tools.