Bayesian Methods for Unsupervised Learning

[1]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[2]  Carl E. Rasmussen,et al.  Occam's Razor , 2000, NIPS.

[3]  Zoubin Ghahramani,et al.  Propagation Algorithms for Variational Bayesian Learning , 2000, NIPS.

[4]  Zoubin Ghahramani,et al.  Variational Inference for Bayesian Mixtures of Factor Analysers , 1999, NIPS.

[5]  Hagai Attias,et al.  Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.

[6]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[7]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[8]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[9]  Geoffrey E. Hinton,et al.  The EM algorithm for mixtures of factor analyzers , 1996 .

[10]  Steve R. Waterhouse,et al.  Bayesian Methods for Mixtures of Experts , 1995, NIPS.

[11]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[12]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[13]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[14]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[15]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[16]  Geoffrey E. Hinton,et al.  Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.

[17]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[18]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[19]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[20]  C. S. Wallace,et al.  Estimation and Inference by Compact Coding , 1987 .

[21]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[22]  Judea Pearl,et al.  A Computational Model for Causal and Diagnostic Reasoning in Inference Systems , 1983, IJCAI.

[23]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[26]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .