Approximation of a fractional order model by an integer order model: a new approach taking into account approximation error as an uncertainty

In order to solve some analysis or control problems for fractional order models, integer order approximations are often used. However, in many works, approximation error is not taken into account, leading to results that cannot be guaranteed for the initial fractional order model. The objective of the paper is thus to provide a new methodology that takes into account approximation error and leads to rewriting the fractional order model as an uncertain integer order model.

[1]  A. Oustaloup,et al.  Numerical Simulations of Fractional Systems: An Overview of Existing Methods and Improvements , 2004 .

[2]  J. Machado,et al.  Implementation of Discrete-Time Fractional- Order Controllers based on LS Approximations , 2006 .

[3]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[4]  Jean-Michel Vinassa,et al.  Fractional non-linear modelling of ultracapacitors , 2010 .

[5]  Christophe Farges,et al.  On Observability and Pseudo State Estimation of Fractional Order Systems , 2012, Eur. J. Control.

[6]  S. Rodrigues,et al.  A review of state-of-charge indication of batteries by means of a.c. impedance measurements , 2000 .

[7]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[8]  Christophe Farges,et al.  H2-norm of fractional transfer functions of implicit type of the first kind , 2014 .

[9]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[10]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[11]  I. Podlubny Fractional differential equations , 1998 .

[12]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[13]  M. Fliess,et al.  Gain Estimation for Fractional Linear Systems , 1998 .

[14]  Yong Wang,et al.  State space approximation for general fractional order dynamic systems , 2014, Int. J. Syst. Sci..

[15]  J. Sabatier,et al.  On Fractional Systems H∞, -Norm Computation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[16]  Alain Oustaloup,et al.  Analytical computation of the H2-norm of fractional commensurate transfer functions , 2011, Autom..

[17]  Antonio Visioli,et al.  H∞H∞ control of fractional linear systems , 2013, Autom..

[18]  D. Matignon,et al.  Diffusive Realisations of Fractional Integrodifferential Operators: Structural Analysis Under Approximation , 1998 .

[19]  Alina Voda,et al.  Optimal Approximation, Simulation and Analog Realization of the Fundamental Fractional Order Transfer Function , 2007, Int. J. Appl. Math. Comput. Sci..

[20]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[21]  Christophe Farges,et al.  H∞ analysis and control of commensurate fractional order systems , 2013 .

[22]  Mathieu Moze,et al.  Pseudo state feedback stabilization of commensurate fractional order systems , 2009, 2009 European Control Conference (ECC).

[23]  Gérard Montseny,et al.  Diffusive representation of pseudo-differential time-operators , 1998 .

[24]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[25]  Thomas J. Anastasio,et al.  Nonuniformity in the linear network model of the oculomotor integrator produces approximately fractional-order dynamics and more realistic neuron behavior , 1998, Biological Cybernetics.

[26]  Mohamed Darouach,et al.  Robust stabilization of uncertain descriptor fractional-order systems , 2013, Autom..

[27]  A. Ijspeert,et al.  Fractional Multimodels of the Gastrocnemius Muscle for Tetanus Pattern , 2007 .

[28]  David Héleschewitz Analyse et simulation de systemes differentiels fractionnaires et pseudo-differentiels lineaires sous representation diffusive , 2000 .

[29]  Y. Chen,et al.  A Modified Approximation Method of Fractional Order System , 2006, 2006 International Conference on Mechatronics and Automation.

[30]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..