Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode

[1]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[2]  Anders Hagfeldt,et al.  Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells , 2012 .

[3]  Stefano Curtarolo,et al.  A search model for topological insulators with high-throughput robustness descriptors. , 2012, Nature materials.

[4]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[5]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .

[6]  Jochen Lauterbach,et al.  The Materials Super Highway: Integrating High-Throughput Experimentation into Mapping the Catalysis Materials Genome , 2014, Catalysis Letters.

[7]  T. Brinck,et al.  Synthesis and Mechanistic Studies of Organic Chromophores with Different Energy Levels for p-Type Dye-Sensitized Solar Cells , 2010 .

[8]  Gerbrand Ceder,et al.  Identification and design principles of low hole effective mass p-type transparent conducting oxides , 2013, Nature Communications.

[9]  A. Millis,et al.  Advances in the physics of high-temperature superconductivity , 2000, Science.

[10]  R. Marcus,et al.  Device modeling of dye-sensitized solar cells. , 2013, Topics in current chemistry.

[11]  Tomas Edvinsson,et al.  Design of an organic chromophore for p-type dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[12]  Mingzhe Yu,et al.  Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[13]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[14]  Donald Fitzmaurice,et al.  Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents , 1993 .

[15]  A. Klein,et al.  Energy band alignment between Pb(Zr,Ti)O3 and high and low work function conducting oxides—from hole to electron injection , 2010 .

[16]  M. S. Hegde,et al.  Ferroelectric Properties of Lead Titanate , 1968 .

[17]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[18]  R. Dillon,et al.  Growth and Post-Deposition Treatments of SrTiO3 Films for Dye-Sensitized Photoelectrosynthesis Cell Applications. , 2016, ACS applied materials & interfaces.

[19]  Margherita Sosio,et al.  Antibiotic discovery in the twenty-first century: current trends and future perspectives , 2010, The Journal of Antibiotics.

[20]  A. Nozik,et al.  Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition. , 2016, ACS applied materials & interfaces.

[21]  A. J. Frank,et al.  Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques , 2000 .

[22]  Zhongjie Huang,et al.  Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells , 2012 .

[23]  Jianjun He,et al.  Dye-Sensitized Nanostructured p-Type Nickel Oxide Film as a Photocathode for a Solar Cell , 1999 .

[24]  R. Whatmore,et al.  Fabrication of Arrays of Lead Zirconate Titanate (PZT) Nanodots via Block Copolymer Self-Assembly , 2013 .

[25]  Cormac Toher,et al.  Universal fragment descriptors for predicting properties of inorganic crystals , 2016, Nature Communications.

[26]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[27]  Surya R. Kalidindi,et al.  Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials , 2015 .

[28]  Assaf Y Anderson,et al.  Water‐Based Electrolytes for Dye‐Sensitized Solar Cells , 2010, Advanced materials.

[29]  Krishna Rajan,et al.  Materials Informatics: The Materials ``Gene'' and Big Data , 2015 .

[30]  Xiujian Zhao,et al.  Use of delafossite oxides CuCr1-xGaxO2 nanocrystals in p-type dye-sensitized solar cell , 2016 .

[31]  Liang-ying Zhang,et al.  Study of the surface layer of lead titanate thin film by x-ray diffraction , 1995 .

[32]  R. Glen,et al.  Molecular similarity: a key technique in molecular informatics. , 2004, Organic & biomolecular chemistry.

[33]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[34]  Jürgen Bajorath,et al.  Integration of virtual and high-throughput screening , 2002, Nature Reviews Drug Discovery.

[35]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[36]  T. Moore,et al.  Photoinjection of High Potential Holes into Cu5Ta11O30 Nanoparticles by Porphyrin Dyes , 2015 .

[37]  Marco Buongiorno Nardelli,et al.  The AFLOW standard for high-throughput materials science calculations , 2015, 1506.00303.

[38]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[39]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[40]  Zhongjie Huang,et al.  A double-acceptor as a superior organic dye design for p-type DSSCs: high photocurrents and the observed light soaking effect. , 2014, Physical chemistry chemical physics : PCCP.

[41]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[42]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[43]  Kathrin Heikamp,et al.  The Future of Virtual Compound Screening , 2013, Chemical biology & drug design.

[44]  Aron Walsh,et al.  Computational Screening of All Stoichiometric Inorganic Materials , 2016, Chem.

[45]  T. Brezesinski,et al.  Ordered Mesoporous Thin Film Ferroelectrics of Biaxially Textured Lead Zirconate Titanate (PZT) by Chemical Solution Deposition , 2014 .

[46]  Federico Bella,et al.  Aqueous dye-sensitized solar cells. , 2015, Chemical Society reviews.

[47]  Z. Tian,et al.  pH-dependent electron transfer from re-bipyridyl complexes to metal oxide nanocrystalline thin films. , 2005, The journal of physical chemistry. B.

[48]  Pedro J Ballester,et al.  Machine‐learning scoring functions to improve structure‐based binding affinity prediction and virtual screening , 2015, Wiley interdisciplinary reviews. Computational molecular science.

[49]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[50]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[51]  Aron Walsh,et al.  Inorganic materials: The quest for new functionality. , 2015, Nature chemistry.

[52]  David F. Watson,et al.  Cation effects in nanocrystalline solar cells , 2004 .

[53]  Peter Willett,et al.  The Calculation of Molecular Structural Similarity: Principles and Practice , 2014, Molecular informatics.

[54]  Frank E. Osterloh,et al.  Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals , 2016 .

[55]  A. Nozik,et al.  Compositionally-tunable mechanochemical synthesis of ZnxCo3−xO4 nanoparticles for mesoporous p-type photocathodes , 2015 .

[56]  A. Gorse Diversity in medicinal chemistry space. , 2006, Current topics in medicinal chemistry.

[57]  U. Bach,et al.  Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells. , 2015, Angewandte Chemie.

[58]  E. Tiekink,et al.  Perovskite-structured PbTiO3 thin films grown from a single-source precursor. , 2013, Inorganic chemistry.

[59]  Tengfei Jiang,et al.  Copper borate as a photocathode in p-type dye-sensitized solar cells , 2016 .

[60]  Yang Yang,et al.  Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells , 2015 .

[61]  S. Kang,et al.  Highly Robust Hybrid Photocatalyst for Carbon Dioxide Reduction: Tuning and Optimization of Catalytic Activities of Dye/TiO2/Re(I) Organic-Inorganic Ternary Systems. , 2015, Journal of the American Chemical Society.

[62]  Minglong Zhang,et al.  Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook , 2013 .