Multilocus Genetic Analysis of Brain Images

The quest to identify genes that influence disease is now being extended to find genes that affect biological markers of disease, or endophenotypes. Brain images, in particular, provide exquisitely detailed measures of anatomy, function, and connectivity in the living brain, and have identified characteristic features for many neurological and psychiatric disorders. The emerging field of imaging genomics is discovering important genetic variants associated with brain structure and function, which in turn influence disease risk and fundamental cognitive processes. Statistical approaches for testing genetic associations are not straightforward to apply to brain images because the data in brain images is spatially complex and generally high dimensional. Neuroimaging phenotypes typically include 3D maps across many points in the brain, fiber tracts, shape-based analyses, and connectivity matrices, or networks. These complex data types require new methods for data reduction and joint consideration of the image and the genome. Image-wide, genome-wide searches are now feasible, but they can be greatly empowered by sparse regression or hierarchical clustering methods that isolate promising features, boosting statistical power. Here we review the evolution of statistical approaches to assess genetic influences on the brain. We outline the current state of multivariate statistics in imaging genomics, and future directions, including meta-analysis. We emphasize the power of novel multivariate approaches to discover reliable genetic influences with small effect sizes.

[1]  J. Clarke,et al.  Medicine , 1907, Bristol medico-chirurgical journal.

[2]  Arthur E. Hoerl,et al.  Application of ridge analysis to regression problems , 1962 .

[3]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[4]  D. Kleinbaum,et al.  Applied Regression Analysis and Other Multivariate Methods , 1978 .

[5]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[6]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[7]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[8]  Andreas Heinz,et al.  A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity , 2000, Biological Psychiatry.

[9]  Tyrone D. Cannon,et al.  Genetic influences on brain structure , 2001, Nature Neuroscience.

[10]  Paul Schliekelman,et al.  Statistical Methods in Bioinformatics: An Introduction , 2001 .

[11]  J. Ott,et al.  Trimming, weighting, and grouping SNPs in human case-control association studies. , 2001, Genome research.

[12]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[13]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[14]  M. Egan,et al.  Serotonin Transporter Genetic Variation and the Response of the Human Amygdala , 2002, Science.

[15]  J. Belknap,et al.  Complex-trait genetics: emergence of multivariate strategies , 2002, Nature Reviews Neuroscience.

[16]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[17]  Jotun Hein,et al.  Statistical Methods in Bioinformatics: An Introduction , 2002 .

[18]  D. Gianola,et al.  On marker-assisted prediction of genetic value: beyond the ridge. , 2003, Genetics.

[19]  I. Gottesman,et al.  The endophenotype concept in psychiatry: etymology and strategic intentions. , 2003, The American journal of psychiatry.

[20]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[21]  Paul M. Thompson,et al.  Inverse Consistent Mapping in 3D Deformable Image Registration: Its Construction and Statistical Properties , 2005, IPMI.

[22]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[23]  M. Olivier A haplotype map of the human genome. , 2003, Nature.

[24]  J. Ioannidis Why Most Published Research Findings Are False , 2005, PLoS medicine.

[25]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[26]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[27]  A. Meyer-Lindenberg,et al.  Intermediate phenotypes and genetic mechanisms of psychiatric disorders , 2006, Nature Reviews Neuroscience.

[28]  Bradley M. Hemminger,et al.  TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits , 2006, Bioinform..

[29]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[30]  Winnie S. Liang,et al.  GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. , 2007, Neuron.

[31]  P. Thompson,et al.  Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function , 2007, Human brain mapping.

[32]  Wing-Kin Sung,et al.  Association mapping via regularized regression analysis of single-nucleotide-polymorphism haplotypes in variable-sized sliding windows. , 2007, American journal of human genetics.

[33]  J. Trojanowski,et al.  Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics , 2007, Nature Reviews Drug Discovery.

[34]  Arnoldo Frigessi,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm305 Gene expression Predicting survival from microarray data—a comparative study , 2022 .

[35]  M. Jarvelin,et al.  A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity , 2007, Science.

[36]  David S. Wishart,et al.  Applications of Machine Learning in Cancer Prediction and Prognosis , 2006, Cancer informatics.

[37]  Winnie S. Liang,et al.  GAB2 Alleles Modify Alzheimer's Risk in APOE ɛ4 Carriers , 2007, Neuron.

[38]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[39]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[40]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[41]  M. McCarthy,et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges , 2008, Nature Reviews Genetics.

[42]  Kai Wang,et al.  A principal components regression approach to multilocus genetic association studies , 2008, Genetic epidemiology.

[43]  T. Manolio,et al.  How to Interpret a Genome-wide Association Study Topic Collections , 2022 .

[44]  Manuel A. R. Ferreira,et al.  Practical aspects of imputation-driven meta-analysis of genome-wide association studies. , 2008, Human molecular genetics.

[45]  Marcus R. Munafò,et al.  Serotonin Transporter (5-HTTLPR) Genotype and Amygdala Activation: A Meta-Analysis , 2008, Biological Psychiatry.

[46]  N. Schork,et al.  Accommodating linkage disequilibrium in genetic-association analyses via ridge regression. , 2008, American journal of human genetics.

[47]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[48]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[49]  V. Calhoun,et al.  Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA , 2009, Human brain mapping.

[50]  Andrew J. Saykin,et al.  Hippocampal Atrophy as a Quantitative Trait in a Genome-Wide Association Study Identifying Novel Susceptibility Genes for Alzheimer's Disease , 2009, PloS one.

[51]  Ingrid Agartz,et al.  A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations , 2009, Proceedings of the National Academy of Sciences.

[52]  G. Rosner,et al.  A modified forward multiple regression in high‐density genome‐wide association studies for complex traits , 2009, Genetic epidemiology.

[53]  S. Cichon,et al.  Genomewide association studies: history, rationale, and prospects for psychiatric disorders. , 2009, The American journal of psychiatry.

[54]  John P A Ioannidis,et al.  Meta-analysis in genome-wide association studies. , 2009, Pharmacogenomics.

[55]  S. Potkin,et al.  Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia , 2009, Molecular Psychiatry.

[56]  V. Pungpapong,et al.  Simultaneous genome-wide association studies of anti-cyclic citrullinated peptide in rheumatoid arthritis using penalized orthogonal-components regression , 2009, BMC proceedings.

[57]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[58]  Kyunga Kim,et al.  Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis , 2009, BMC proceedings.

[59]  Min Zhang,et al.  Penalized orthogonal-components regression for large p small n data , 2008, 0811.4167.

[60]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[61]  Agatha D. Lee,et al.  Genetics of Brain Fiber Architecture and Intellectual Performance , 2009, The Journal of Neuroscience.

[62]  E. Bedel Relationship between , 2009 .

[63]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[64]  Michael W. Weiner,et al.  A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly , 2010, Proceedings of the National Academy of Sciences.

[65]  Michael Weiner,et al.  Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort , 2010, NeuroImage.

[66]  J. D. Watson,et al.  The Future of Psychiatric Research: Genomes and Neural Circuits , 2010, Science.

[67]  Michael Weiner,et al.  Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer's disease , 2010, NeuroImage.

[68]  Jianqing Fan,et al.  Sure independence screening in generalized linear models with NP-dimensionality , 2009, The Annals of Statistics.

[69]  Karl J. Friston,et al.  Topological FDR for neuroimaging , 2010, NeuroImage.

[70]  M. Hall A New Role for Endophenotypes in the GWAS Era: Functional Characterization of Risk Variants , 2010, Harvard review of psychiatry.

[71]  Gary H. Glover,et al.  COMT genotype affects prefrontal white matter pathways in children and adolescents , 2010, NeuroImage.

[72]  Anderson M. Winkler,et al.  Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies , 2010, NeuroImage.

[73]  Lin S. Chen,et al.  Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. , 2010, American journal of human genetics.

[74]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[75]  Thomas E. Nichols,et al.  Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach , 2010, NeuroImage.

[76]  Vince D. Calhoun,et al.  Genetic Associations of Brain Structural Networks in Schizophrenia: A Preliminary Study , 2010, Biological Psychiatry.

[77]  K. Lange,et al.  Prioritizing GWAS results: A review of statistical methods and recommendations for their application. , 2010, American journal of human genetics.

[78]  Paul M. Thompson,et al.  Genetics of microstructure of cerebral white matter using diffusion tensor imaging , 2010, NeuroImage.

[79]  Andrew J. Saykin,et al.  Voxelwise genome-wide association study (vGWAS) , 2010, NeuroImage.

[80]  Paul M. Thompson,et al.  BDNF gene effects on brain circuitry replicated in 455 twins , 2011, NeuroImage.

[81]  Qianchuan He,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .

[82]  N. Jahanshad,et al.  Common Alzheimer's Disease Risk Variant Within the CLU Gene Affects White Matter Microstructure in Young Adults , 2011, The Journal of Neuroscience.

[83]  B. Franke,et al.  Association of the Alzheimer's gene SORL1 with hippocampal volume in young, healthy adults. , 2011, The American journal of psychiatry.

[84]  Michael Weiner,et al.  Boosting Power to Detect Genetic Associations in Imaging Using Multi-locus, Genome-wide Scans and Ridge Regression , 2022 .

[85]  P. Thompson,et al.  Diffusion imaging, white matter, and psychopathology. , 2011, Annual review of clinical psychology.

[86]  Paul M. Thompson,et al.  Hierarchical clustering of the genetic connectivity matrix reveals the network topology of gene action on brain microstructure: An N=531 twin study , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[87]  Michael Weiner,et al.  Voxelwise gene-wide association study (vGeneWAS): Multivariate gene-based association testing in 731 elderly subjects , 2011, NeuroImage.

[88]  C. Jack,et al.  Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search , 2011, Molecular Psychiatry.

[89]  Paul M. Thompson,et al.  Neuroimaging Measures as Endophenotypes in Alzheimer's Disease , 2011, International journal of Alzheimer's disease.