Geometric robust descriptor for 3D point cloud

We propose rotation robust and density robust local geometric descriptor. Local geometric feature of point cloud is used in many applications, for example, to find correspondences in 3D registration and to segment local regions. Usually, application accuracy depends on the discriminative power of the local geometric features. However, there are some problems such as point sparsity, rotated point cloud, and so on. In this paper, we present new local feature generation method to make a rotation robust and density robust descriptor. First, we place kernels aligned around each point and align them to the normal of the point. To avoid the sign problem of the normal vector, we use symmetric kernel point distribution with respect to the tangent plane. Next, from each kernel point, we estimate geometric information which is rotation robust and discriminative. Finally, we operate convolution process with consideration of kernel point structure, and aggregate all kernel features. We experiment our local descriptors on the ModelNet40 dataset [1] for registration and classification, and the ShapeNet part dataset [2] for segmentation. Our descriptor shows discriminative power regardless of point distribution.

[1]  Nikos Komodakis,et al.  Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Yaron Lipman,et al.  Point convolutional neural networks by extension operators , 2018, ACM Trans. Graph..

[3]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[4]  Ulrich Neumann,et al.  SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  Yifan Xu,et al.  SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters , 2018, ECCV.

[6]  Yue Wang,et al.  Deep Closest Point: Learning Representations for Point Cloud Registration , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Minh Le Nguyen,et al.  DGCNN: A convolutional neural network over large-scale labeled graphs , 2018, Neural Networks.

[8]  Leonidas J. Guibas,et al.  SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Subhransu Maji,et al.  SPLATNet: Sparse Lattice Networks for Point Cloud Processing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[11]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[12]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Ulrich Neumann,et al.  Recurrent Slice Networks for 3D Segmentation of Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[16]  Victor S. Lempitsky,et al.  Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[17]  Vladlen Koltun,et al.  Fully Convolutional Geometric Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[19]  Federico Tombari,et al.  SHOT: Unique signatures of histograms for surface and texture description , 2014, Comput. Vis. Image Underst..

[20]  Kaleem Siddiqi,et al.  Local Spectral Graph Convolution for Point Set Feature Learning , 2018, ECCV.

[21]  Andreas Wieser,et al.  The Perfect Match: 3D Point Cloud Matching With Smoothed Densities , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Timo Ropinski,et al.  Monte Carlo convolution for learning on non-uniformly sampled point clouds , 2018, ACM Trans. Graph..

[23]  Leonidas J. Guibas,et al.  A scalable active framework for region annotation in 3D shape collections , 2016, ACM Trans. Graph..

[24]  Slobodan Ilic,et al.  PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors , 2018, ECCV.

[25]  Yasuhiro Aoki,et al.  PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Patrick Wieschollek,et al.  Flex-Convolution - Million-Scale Point-Cloud Learning Beyond Grid-Worlds , 2018, ACCV.

[27]  Theodore Lim,et al.  Generative and Discriminative Voxel Modeling with Convolutional Neural Networks , 2016, ArXiv.

[28]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[29]  Jiaolong Yang,et al.  Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[33]  Laurens van der Maaten,et al.  3D Semantic Segmentation with Submanifold Sparse Convolutional Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Jiaxin Li,et al.  SO-Net: Self-Organizing Network for Point Cloud Analysis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[37]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[39]  Benjamin Graham,et al.  Spatially-sparse convolutional neural networks , 2014, ArXiv.

[40]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[41]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.