A review and an approach for object detection in images

Abstract: An object detection system finds objects of the real world present either in a digital image or a video, where the object can belong to any class of objects namely humans, cars, etc. In order to detect an object in an image or a video the system needs to have a few components in order to complete the task of detecting an object, they are a model database, a feature detector, a hypothesiser and a hypothesiser verifier. This paper presents a review of the various techniques that are used to detect an object, localise an object, categorise an object, extract features, appearance information, and many more, in images and videos. The comments are drawn based on the studied literature and key issues are also identified relevant to the object detection. Information about the source codes and online datasets is provided to facilitate the new researcher in object detection area. An idea about the possible solution for the multi class object detection is also presented. This paper is suitable for the researchers who are the beginners in this domain.

[1]  Wenyu Liu,et al.  Feature context for image classification and object detection , 2011, CVPR 2011.

[2]  Antonio Torralba,et al.  Object Recognition by Scene Alignment , 2007, NIPS.

[3]  Longin Jan Latecki,et al.  Contour-based object detection as dominant set computation , 2012, Pattern Recognit..

[4]  Joachim Hertzberg,et al.  Contour-Based Object Detection in Range Images , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[5]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[6]  Pietro Perona,et al.  Mutual Boosting for Contextual Inference , 2003, NIPS.

[7]  Pietro Perona,et al.  Is bottom-up attention useful for object recognition? , 2004, CVPR 2004.

[8]  Shaogang Gong,et al.  Quantifying contextual information for object detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[9]  Lior Wolf,et al.  A Critical View of Context , 2006, International Journal of Computer Vision.

[10]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[11]  Jitendra Malik,et al.  Shape Context: A New Descriptor for Shape Matching and Object Recognition , 2000, NIPS.

[12]  Alejandro F. Frangi,et al.  Haar-like features with optimally weighted rectangles for rapid object detection , 2010, Pattern Recognition.

[13]  Rafael Mu,et al.  Door-detection using computer vision and fuzzy logic , 2003 .

[14]  Ashutosh Malaviya,et al.  Object recognition using fuzzy set theoretic techniques , 1993, Defense, Security, and Sensing.

[15]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Michaël Garcia Ortiz,et al.  The contribution of context information: A case study of object recognition in an intelligent car , 2012, Neurocomputing.

[17]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Sinisa Segvic,et al.  Sliding Window Object Detection without Spatial Clustering of Raw Detection Responses , 2012, SyRoCo.

[19]  Aranzazu Jurio,et al.  Hierarchical fuzzy logic based approach for object tracking , 2013, Knowl. Based Syst..

[20]  Jianbo Shi,et al.  Contour Context Selection for Object Detection: A Set-to-Set Contour Matching Approach , 2008, ECCV.

[21]  Rita Cucchiara,et al.  Multistage Particle Windows for Fast and Accurate Object Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Antonio Torralba,et al.  Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes , 2003, NIPS.

[23]  Olac Fuentes,et al.  Object detection using image reconstruction with PCA , 2009, Image Vis. Comput..

[24]  Anurag Mittal,et al.  Multi-stage Contour Based Detection of Deformable Objects , 2008, ECCV.

[25]  Praveen Dasigi Efficient Graph-based Image Matching for Recognition and Retrieval , .

[26]  Yutaka Satoh,et al.  Object detection based on a robust and accurate statistical multi-point-pair model , 2011, Pattern Recognit..

[27]  Hoi-Jun Yoo,et al.  Real-Time Object Recognition with Neuro-Fuzzy Controlled Workload-Aware Task Pipelining , 2009, IEEE Micro.

[28]  D. Prasad Survey of The Problem of Object Detection In Real Images , 2012 .

[29]  Benjamin B. Kimia,et al.  A Similarity-Based Aspect-Graph Approach to 3D Object Recognition , 2004, International Journal of Computer Vision.

[30]  Ivan Laptev,et al.  Improving object detection with boosted histograms , 2009, Image Vis. Comput..

[31]  Jitendra Malik,et al.  Using contours to detect and localize junctions in natural images , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Sander Stuijk,et al.  RASW: A run-time adaptive sliding window to improve Viola-Jones object detection , 2013, 2013 Seventh International Conference on Distributed Smart Cameras (ICDSC).

[33]  Rizalafande Che Ismail,et al.  Digital Image Processing Techniques for Object Detection From Complex Background Image , 2012 .

[34]  Martial Hebert,et al.  A hierarchical field framework for unified context-based classification , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[35]  Wen Gao,et al.  Object detection using spatial histogram features , 2006, Image Vis. Comput..

[36]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[37]  Shih-Fu Chang,et al.  Learning Random Attributed Relational Graph for Part-based Object Detection , 2005 .

[38]  Bernt Schiele,et al.  Using Local Context To Improve Face Detection , 2003, BMVC.

[39]  Cheng Chen,et al.  Door detection via signage context-based Hierarchical Compositional Model , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[40]  B. Triggs,et al.  Scene segmentation with Conditional Random Fields learned from partially labeled images , 2007, NIPS 2007.

[41]  William G. Wee,et al.  Graph matching for object recognition and recovery , 2004, Pattern Recognit..

[42]  Yongjun Ma,et al.  Algorithm for Object Detection using Multi-Core Parallel Computation , 2012 .

[43]  Zehang Sun,et al.  Object detection using feature subset selection , 2004, Pattern Recognit..

[44]  Andrew Blake,et al.  Multiscale Categorical Object Recognition Using Contour Fragments , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Henrik I. Christensen,et al.  Object detection using background context , 2004, ICPR 2004.

[46]  Sylvie Philipp-Foliguet,et al.  Inexact graph matching based on kernels for object retrieval in image databases , 2011, Image Vis. Comput..

[47]  Jian Dong,et al.  Contextualizing Object Detection and Classification , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Alberto Sanfeliu,et al.  Function-described graphs for modelling objects represented by sets of attributed graphs , 2003, Pattern Recognit..

[49]  Zejian Yuan,et al.  Object detection using discriminative photogrammetric context , 2011, 2011 18th IEEE International Conference on Image Processing.

[50]  Silvio Savarese,et al.  Object Detection with Geometrical Context Feedback Loop , 2010, BMVC.

[51]  Tsuhan Chen,et al.  From appearance to context-based recognition: Dense labeling in small images , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  B. Ommer,et al.  Contour-based object detection , 2011, BMVC.

[53]  Khaldi Amine,et al.  An Active Contour for Range Image Segmentation , 2012 .

[54]  Rainer Stiefelhagen,et al.  Automatic Person Detection and Tracking using Fuzzy Controlled Active Cameras , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Jochen Triesch,et al.  OBJECT RECOGNITION WITH DEFORMABLE FEATURE GRAPHS: FACES, HANDS, AND CLUTTERED SCENES , 2005 .

[56]  Elmer P. Dadios,et al.  Dynamic Color Object Recognition Using Fuzzy Logic , 2004, J. Adv. Comput. Intell. Intell. Informatics.

[57]  Stefan Schaal,et al.  Graph matching vs mutual information maximization for object detection , 2001, Neural Networks.

[58]  Ralph Gross,et al.  Concurrent Object Recognition and Segmentation by Graph Partitioning , 2002, NIPS.

[59]  Ales Leonardis,et al.  A framework for visual-context-aware object detection in still images , 2010, Comput. Vis. Image Underst..

[60]  Himanshu Sharma Object Detection in Remote Sensing Images: A Review , 2012 .

[61]  Youngtae Park,et al.  Shape-resolving local thresholding for object detection , 2001, Pattern Recognit. Lett..

[62]  Zheru Chi,et al.  Salient object detection using content-sensitive hypergraph representation and partitioning , 2012, Pattern Recognit..

[63]  Pablo Andrés Arbeláez,et al.  Boundary Extraction in Natural Images Using Ultrametric Contour Maps , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[64]  Touradj Ebrahimi,et al.  Graph-based approach for 3D object duplicate detection , 2009, 2009 10th Workshop on Image Analysis for Multimedia Interactive Services.

[65]  Luc Brun,et al.  Image interpretation with a conceptual graph: Labeling over-segmented images and detection of unexpected objects , 2009, Artif. Intell..

[66]  S. Arumuga Perumal,et al.  A FUZZY FILTERING MODEL FOR CONTOUR DETECTION , 2011 .

[67]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[68]  Bir Bhanu,et al.  Object detection in multi-modal images using genetic programming , 2004, Appl. Soft Comput..

[69]  Jan-Mark Geusebroek,et al.  Salient object detection: From pixels to segments , 2013, Image Vis. Comput..

[70]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Antonio Torralba,et al.  A boosting approach for the simultaneous detection and segmentation of generic objects , 2013, Pattern Recognit. Lett..

[72]  Serge J. Belongie,et al.  Context based object categorization: A critical survey , 2010, Comput. Vis. Image Underst..

[73]  Jake Porway,et al.  A stochastic graph grammar for compositional object representation and recognition , 2009, Pattern Recognit..

[74]  Stefano Cagnoni,et al.  Particle Swarm Optimization and Differential Evolution for model-based object detection , 2013, Appl. Soft Comput..

[75]  Eric O. Postma,et al.  Accuracy versus speed in context-based object detection , 2007, Pattern Recognit. Lett..

[76]  Ayman Alfalou,et al.  Fuzzy logic and optical correlation-based face recognition method for patient monitoring application in home video surveillance , 2011 .

[77]  Alvaro Soto,et al.  Adaptive hierarchical contexts for object recognition with conditional mixture of trees , 2012, BMVC.

[78]  Bastian Leibe,et al.  Efficient Use of Geometric Constraints for Sliding-Window Object Detection in Video , 2011, ICVS.

[79]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[80]  Cenk Sokmensuer,et al.  Automatic segmentation of colon glands using object-graphs , 2010, Medical Image Anal..

[81]  Sébastien Marcel,et al.  Fast Bounding Box Estimation based Face Detection , 2010 .

[82]  Andrea Vedaldi,et al.  Objects in Context , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[83]  Tetsuya Takiguchi,et al.  Generic object recognition by graph structural expression , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[84]  Andrew Y. Ng,et al.  A Steiner tree approach to efficient object detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[85]  Bahadır KARASULU,et al.  REVIEW AND EVALUATION OF WELL-KNOWN METHODS FOR MOVING OBJECT DETECTION AND TRACKING IN VIDEOS , 2010 .

[86]  Jiebo Luo,et al.  Probabilistic spatial context models for scene content understanding , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[87]  Ertunc Erdil,et al.  ASOD: Arbitrary shape object detection , 2011, Eng. Appl. Artif. Intell..

[88]  Lucia Maddalena,et al.  A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection , 2010, Neural Computing and Applications.

[89]  Chin-Chuan Han,et al.  A novel approach to the detection of small objects with low contrast , 2006, Signal Process..

[90]  Junfeng Ge,et al.  A Comprehensive Study for Asymmetric AdaBoost and Its Application in Object Detection , 2009 .

[91]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[92]  Longin Jan Latecki,et al.  Shape guided contour grouping with particle filters , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[93]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[94]  Peter Kontschieder,et al.  Context-Sensitive Decision Forests for Object Detection , 2012, NIPS.

[95]  David Suter,et al.  Object detection by global contour shape , 2008, Pattern Recognit..