Subgraph Covers- an Information Theoretic Approach to Motif Analysis in Networks

[1]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  A. D. Jackson,et al.  Citation networks in high energy physics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[4]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[5]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[6]  F. Chung,et al.  Spectra of random graphs with given expected degrees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[8]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Thilo Gross,et al.  Engineering mesoscale structures with distinct dynamical implications , 2012, New Journal of Physics.

[10]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[11]  Anatol E. Wegner,et al.  Subgraph covers - An information theoretic approach to motif analysis in networks , 2014, ArXiv.

[12]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[13]  P. Diaconis,et al.  Estimating and understanding exponential random graph models , 2011, 1102.2650.

[14]  C. S. Wallace,et al.  Statistical and Inductive Inference by Minimum Message Length (Information Science and Statistics) , 2005 .

[15]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[16]  David Saad,et al.  The Interplay between Microscopic and Mesoscopic Structures in Complex Networks , 2010, PloS one.

[17]  E. Davidson,et al.  Gene regulatory networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[19]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[20]  Murray Gell-Mann,et al.  What is complexity? Remarks on simplicity and complexity by the Nobel Prize-winning author of The Quark and the Jaguar , 1995, Complex..

[21]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[22]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[23]  Jean-Loup Guillaume,et al.  Bipartite structure of all complex networks , 2004, Inf. Process. Lett..

[24]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[25]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[26]  Susanna C. Manrubia,et al.  STATISTICAL PROPERTIES OF GENEALOGICAL TREES , 1999, cond-mat/9902033.

[27]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Juyong Park,et al.  Solution for the properties of a clustered network. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Eckehard Olbrich,et al.  Quantifying structure in networks , 2009, 0912.4450.

[30]  J. Beasley,et al.  A genetic algorithm for the set covering problem , 1996 .

[31]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[32]  Jaikumar Radhakrishnan,et al.  Greed is good: Approximating independent sets in sparse and bounded-degree graphs , 1997, Algorithmica.

[33]  Sebastian Wernicke,et al.  FANMOD: a tool for fast network motif detection , 2006, Bioinform..

[34]  B. Bollobás The evolution of random graphs , 1984 .

[35]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[36]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[37]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[38]  Noga Alon,et al.  Algorithmic construction of sets for k-restrictions , 2006, TALG.

[39]  R. Milo,et al.  Subgraphs in random networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Sarel J Fleishman,et al.  Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks" , 2004, Science.

[41]  Mark E. J. Newman,et al.  Random graphs containing arbitrary distributions of subgraphs , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[43]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[44]  Béla Bollobás,et al.  Sparse random graphs with clustering , 2008, Random Struct. Algorithms.

[45]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  Falk Schreiber,et al.  MAVisto: a tool for the exploration of network motifs , 2005, Bioinform..

[47]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[48]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[49]  Seth Lloyd,et al.  Information measures, effective complexity, and total information , 1996 .

[50]  S. N. Dorogovtsev,et al.  Spectra of complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[52]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[53]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[54]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[55]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[56]  D. Corneil,et al.  An Efficient Algorithm for Graph Isomorphism , 1970, JACM.

[57]  Joshua A. Grochow,et al.  Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking , 2007, RECOMB.

[58]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[59]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[60]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[61]  Loet Leydesdorff,et al.  Co-occurrence matrices and their applications in information science: Extending ACA to the Web environment , 2006 .

[62]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[63]  Ravi B. Boppana,et al.  Approximating maximum independent sets by excluding subgraphs , 1992, BIT Comput. Sci. Sect..

[64]  Anirban Banerjee,et al.  Spectral Characterization of Network Structures and Dynamics , 2009 .

[65]  Adolfo Piperno,et al.  Search Space Contraction in Canonical Labeling of Graphs (Preliminary Version) , 2008, ArXiv.

[66]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[67]  Béla Bollobás,et al.  Random Graphs , 1985 .

[68]  Anirban Banerjee,et al.  Graph spectra as a systematic tool in computational biology , 2007, Discret. Appl. Math..

[69]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Marcus Kaiser,et al.  Strategies for Network Motifs Discovery , 2009, 2009 Fifth IEEE International Conference on e-Science.

[73]  Ginestra Bianconi,et al.  Entropy measures for networks: toward an information theory of complex topologies. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  F. Atay,et al.  Network synchronization: Spectral versus statistical properties , 2006, 0706.3069.

[75]  R. Schack Algorithmic information and simplicity in statistical physics , 1994 .