An integrated tool-set for Control, Calibration and Characterization of quantum devices applied to superconducting qubits

Efforts to scale-up quantum computation have reached a point where the principal limiting factor is not the number of qubits, but the entangling gate infidelity. However, a highly detailed system characterization required to understand the underlying errors is an arduous process and impractical with increasing chip size. Open-loop optimal control techniques allow for the improvement of gates but are limited by the models they are based on. To rectify the situation, we provide a new integrated open-source tool-set for Control, Calibration and Characterization ($C^3$), capable of open-loop pulse optimization, model-free calibration, model fitting and refinement. We present a methodology to combine these tools to find a quantitatively accurate system model, high-fidelity gates and an approximate error budget, all based on a high-performance, feature-rich simulator. We illustrate our methods using fixed-frequency superconducting qubits for which we learn model parameters to an accuracy of $<1\%$ and derive a coherence limited cross-resonance (CR) gate that achieves $99.6\%$ fidelity without need for calibration.

[1]  Andrew D. Greentree,et al.  Identifying an experimental two-state Hamiltonian to arbitrary accuracy (11 pages) , 2005 .

[2]  E. Hahn,et al.  Spin Echoes , 2011 .

[3]  Masoud Mohseni,et al.  Estimation of many-body quantum Hamiltonians via compressive sensing , 2011 .

[4]  Steven L. Brunton,et al.  Deep learning for universal linear embeddings of nonlinear dynamics , 2017, Nature Communications.

[5]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[6]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[7]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[8]  Daniel J. Egger,et al.  Qiskit pulse: programming quantum computers through the cloud with pulses , 2020, Quantum Science and Technology.

[9]  Kenneth Rudinger,et al.  Compressed sensing for Hamiltonian reconstruction , 2014, 1410.3029.

[10]  G. Box Science and Statistics , 1976 .

[11]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[12]  I. Rabi Space Quantization in a Gyrating Magnetic Field , 1937 .

[13]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[14]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[15]  D J Egger,et al.  Adaptive hybrid optimal quantum control for imprecisely characterized systems. , 2014, Physical review letters.

[16]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[17]  F. K. Wilhelm,et al.  Single-qubit gates in frequency-crowded transmon systems , 2013, 1306.2279.

[18]  Frank K. Wilhelm,et al.  Simultaneous model selection and parameter estimation: A superconducting qubit coupled to a bath of incoherent two-level systems , 2016, 1608.05360.

[19]  Robert L. Kosut,et al.  IDENTIFICATION OF QUANTUM SYSTEMS , 2002 .

[20]  Christiane P. Koch,et al.  Krotov: A Python implementation of Krotov's method for quantum optimal control , 2019, SciPost Physics.

[21]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[22]  Markus Brink,et al.  Demonstration of quantum volume 64 on a superconducting quantum computing system , 2020, Quantum Science and Technology.

[23]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[24]  Jiayin Chen,et al.  Software tools for quantum control: Improving quantum computer performance through noise and error suppression , 2020 .

[25]  Jianming Cai,et al.  Complete Quantum-State Tomography with a Local Random Field. , 2020, Physical review letters.

[26]  Steven T. Flammia,et al.  Stochastic estimation of dynamical variables , 2018, Quantum Science and Technology.

[27]  V. Negnevitsky,et al.  Estimation of a general time-dependent Hamiltonian for a single qubit , 2016, Nature Communications.

[28]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[29]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[30]  Shai Machnes,et al.  An introduction into optimal control for quantum technologies , 2020, 2003.10132.

[31]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[32]  Howard M. Wiseman,et al.  Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis , 2011, 1102.3700.

[33]  John M. Martinis,et al.  Scalable in situ qubit calibration during repetitive error detection , 2016, 1603.03082.

[34]  M. A. Rol,et al.  Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor , 2019, Applied Physics Letters.

[35]  D. Schuster,et al.  Speedup for quantum optimal control from automatic differentiation based on graphics processing units , 2016, 1612.04929.

[36]  H. De Raedt,et al.  Testing quantum fault tolerance on small systems , 2018, Physical Review A.

[37]  Lennart Ljung,et al.  Perspectives on system identification , 2010, Annu. Rev. Control..

[38]  Olivier Teytaud,et al.  Exploring the MLDA benchmark on the nevergrad platform , 2019, GECCO.

[39]  A. Emery,et al.  Optimal experiment design , 1998 .

[40]  Frank K. Wilhelm,et al.  Characterization of decohering quantum systems: Machine learning approach , 2015, 1510.05655.

[41]  Franco Nori,et al.  Coupling strength estimation for spin chains despite restricted access , 2008, 0810.2866.

[42]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[43]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[44]  M S Kim,et al.  Hamiltonian tomography in an access-limited setting without state initialization. , 2008, Physical review letters.

[45]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[46]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[47]  C J Kalkman,et al.  LabVIEW: A software system for data acquisition, data analysis, and instrument control , 1995, Journal of clinical monitoring.

[48]  Arkady Fedorov,et al.  In Situ Characterization of Qubit Control Lines: A Qubit as a Vector Network Analyzer. , 2017, Physical review letters.

[49]  Dewei Li,et al.  A gradient algorithm for Hamiltonian identification of open quantum systems , 2019, ArXiv.

[50]  S. Filipp,et al.  Leakage reduction in fast superconducting qubit gates via optimal control , 2020, 2003.05952.

[51]  Hartmut Neven,et al.  Learning Non-Markovian Quantum Noise from Moiré-Enhanced Swap Spectroscopy with Deep Evolutionary Algorithm , 2019, ArXiv.

[52]  Peter A. N. Bosman Proceedings of the Genetic and Evolutionary Computation Conference Companion , 2018, GECCO.

[53]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[54]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[55]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[56]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[57]  Aonan Zhang,et al.  Experimental Self-Characterization of Quantum Measurements. , 2020, Physical review letters.

[58]  Per J. Liebermann,et al.  Optimized cross-resonance gate for coupled transmon systems , 2017, 1701.01841.

[59]  S G Schirmer,et al.  Quantum system characterization with limited resources , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  Juan Pablo Paz,et al.  QUANTUM COMPUTATION WITH PHASE DRIFT ERRORS , 1997 .

[61]  Gershon Kedem,et al.  Automatic Differentiation of Computer Programs , 1980, TOMS.

[62]  C. K. Andersen,et al.  Implementation of Conditional Phase Gates Based on Tunable ZZ Interactions. , 2020, Physical review letters.

[63]  Paola Cappellaro,et al.  Hamiltonian identifiability assisted by single-probe measurement , 2016, 1609.09446.

[64]  F. Jin,et al.  Gate-error analysis in simulations of quantum computers with transmon qubits , 2017, 1709.06600.

[65]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[66]  Lixing Han,et al.  Effect of dimensionality on the Nelder–Mead simplex method , 2006, Optim. Methods Softw..

[67]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[68]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[69]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[70]  David Poulin,et al.  Practical characterization of quantum devices without tomography. , 2011, Physical review letters.

[71]  Steven T. Flammia,et al.  Efficient learning of quantum noise , 2019, Nature Physics.

[72]  Cornelius Hempel,et al.  Adaptive scheduling of noise characterization in quantum computers , 2019, 1904.07225.

[73]  D. Tannor,et al.  Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. , 2018, Physical review letters.

[74]  Margaret Martonosi,et al.  Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[75]  Maxim Raginsky,et al.  Quantum system identification , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[76]  Frank K Wilhelm,et al.  Efficient estimation of resonant coupling between quantum systems. , 2014, Physical review letters.

[77]  D. Schuster,et al.  Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation , 2019, Physical Review A.

[78]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[79]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[80]  Herschel Rabitz,et al.  Data-driven gradient algorithm for high-precision quantum control , 2017, 1712.01780.

[81]  R. Laflamme,et al.  Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system , 2018, Physical Review A.

[82]  John G. Rarity,et al.  Learning models of quantum systems from experiments , 2020, Nature Physics.

[83]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[84]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[85]  Howard M. Wiseman,et al.  Bayesian quantum noise spectroscopy , 2017, New Journal of Physics.

[86]  H. Neven,et al.  Physical qubit calibration on a directed acyclic graph , 2018, 1803.03226.

[87]  Jun Zhang,et al.  Quantum Hamiltonian identification from measurement time traces. , 2014, Physical review letters.

[88]  F. K. Wilhelm,et al.  Optimized controlled-Z gates for two superconducting qubits coupled through a resonator , 2013, 1306.6894.

[89]  Michel Gevers,et al.  Identification for Control: From the Early Achievements to the Revival of Experiment Design , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[90]  Thomas Alexander,et al.  Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments , 2018, ArXiv.

[91]  Emmanuel Flurin,et al.  Using a Recurrent Neural Network to Reconstruct Quantum Dynamics of a Superconducting Qubit from Physical Observations , 2018, Physical Review X.

[92]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[93]  Edoardo Charbon,et al.  Impact of Classical Control Electronics on Qubit Fidelity , 2018, Physical Review Applied.

[94]  Felix Motzoi,et al.  Global optimization of quantum dynamics with AlphaZero deep exploration , 2019, npj Quantum Information.

[95]  T. Loredo Bayesian Adaptive Exploration , 2004, astro-ph/0409386.

[96]  C. Marcus,et al.  Gatemon Benchmarking and Two-Qubit Operations. , 2015, Physical review letters.

[97]  Simon Maskell,et al.  Multiparameter estimation along quantum trajectories with sequential Monte Carlo methods , 2017, 1707.04725.

[98]  A. Aspuru-Guzik,et al.  Self-driving laboratory for accelerated discovery of thin-film materials , 2019, Science Advances.

[99]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[100]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[101]  Gui-Lu Long,et al.  Experimental quantum Hamiltonian identification from measurement time traces. , 2014, Science bulletin.

[102]  Xavier Bombois,et al.  Optimal experiment design for open and closed-loop system identification , 2011, Commun. Inf. Syst..

[103]  Erik Lucero,et al.  1/f Flux noise in Josephson phase qubits. , 2007, Physical review letters.

[104]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[105]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[106]  S. G. Schirmer,et al.  Quantum system identification by Bayesian analysis of noisy data: Beyond Hamiltonian tomography , 2009 .

[107]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[108]  D. Cory,et al.  Quantum bootstrapping via compressed quantum Hamiltonian learning , 2014, 1409.1524.

[109]  Sarah Sheldon,et al.  Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.

[110]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[111]  Yasunobu Nakamura,et al.  Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions. , 2012, Physical review letters.

[112]  Andrew A. Houck,et al.  Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit , 2018, Physical Review Applied.

[113]  Robin Blume-Kohout,et al.  Gate fidelity fluctuations and quantum process invariants , 2009, 0910.1315.

[114]  Daniel A. Lidar,et al.  Lecture Notes on the Theory of Open Quantum Systems , 2019, 1902.00967.

[115]  Graham C. Goodwin,et al.  Robust optimal experiment design for system identification , 2007, Autom..

[116]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[117]  Jun Zhang,et al.  Identification of open quantum systems from observable time traces , 2015, 1503.06918.

[118]  Quantum logic via optimal control in holographic dipole traps , 2005, quant-ph/0503180.

[119]  Samuel H. Tersigni,et al.  Wavepacket dancing: Achieving chemical selectivity by shaping light pulses , 1989 .

[120]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[121]  H. Rabitz,et al.  Combining the synergistic control capabilities of modeling and experiments: Illustration of finding a minimum-time quantum objective , 2018, Physical Review A.

[122]  C. F. Roos,et al.  Efficient tomography of a quantum many-body system , 2016, Nature Physics.

[123]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[124]  Daniel A. Lidar,et al.  Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits. , 2018, Physical review letters.

[125]  Troy W. Borneman,et al.  Controlling Quantum Devices with Nonlinear Hardware , 2015 .

[126]  Nathan Wiebe,et al.  Quantum Hamiltonian learning using imperfect quantum resources , 2013, 1311.5269.

[127]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[128]  Dennis Willsch,et al.  Supercomputer simulations of transmon quantum computers , 2020, 2008.13490.

[129]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[130]  SG Schirmer,et al.  Experimental Hamiltonian identification for controlled two-level systems , 2004 .