Rough Mereological Foundatins for Design, Analysis, Synthesis, and Control in Distributed Systems

Abstract We propose a unified formal treatment of problems of design, analysis, synthesis and control in distributed systems of intelligent agents. Our approach is rooted in rough set theory and we propose rough mereology as a foundational basis for our approach.

[1]  Andrzej Skowron,et al.  Synthesis of Adaptive Decision Systems from Experimental Data , 1995, SCAI.

[2]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[3]  Andrzej Skowron,et al.  Decision Algorithms: A Survey of Rough Set - Theoretic Methods , 1997, Fundam. Informaticae.

[4]  John H. Connolly,et al.  CSCW and Artificial Intelligence , 1994, Computer Supported Cooperative Work.

[5]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[6]  Andrzej Skowron,et al.  Adaptive Decision-Making by Systems of Cooperating Intelligent Agents Organized on Rough Mereological Principles , 1996, Intell. Autom. Soft Comput..

[7]  Andrzej Skowron,et al.  Rough Mereology , 1994, ISMIS.

[8]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[9]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[10]  Jeffrey S. Rosenschein,et al.  Incomplete Information and Deception in Multi-Agent Negotiation , 1991, IJCAI.

[11]  Didier Dubois,et al.  Readings in Fuzzy Sets for Intelligent Systems , 1993 .

[12]  A. Skowron,et al.  Rough Mereological Controller , 1996 .

[13]  W. Hamilton,et al.  The Evolution of Cooperation , 1984 .

[14]  Barbara Hayes-Roth,et al.  Agents on Stage: Advancing the State of the Art of AI , 1995, IJCAI.

[15]  Andrzej Skowron,et al.  Rough Mereology and Analytical Morphology: New Development in Rough Set Theory , 1995, WOCFAI.

[16]  石田 亨 Parallel, distributed and multiagent production systems , 1994 .

[17]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[18]  Tad Hogg,et al.  Cooperative Problem solving , 1992, Computation: The Micro and the Macro View.

[19]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[20]  Marshall Burns,et al.  Automated Fabrication: Improving Productivity in Manufacturing , 1993 .

[21]  Andrzej Skowron,et al.  Towards a Rough Mereology-Based Logic for Approximate Solution Synthesis. Part 1 , 1997, Stud Logica.

[22]  Robert D. Logcher,et al.  Computer-Aided Cooperative Product Development , 1989, Lecture Notes in Computer Science.

[23]  Victor R. Lesser,et al.  Quantitative Modeling of Complex Computational Task Environments , 1993, AAAI.

[24]  Toru Ishida,et al.  Parallel, Distributed and Multiagent Production Systems , 1994, Lecture Notes in Computer Science.

[25]  Edmund H. Durfee,et al.  Coordination of distributed problem solvers , 1988 .

[26]  Randall Davis,et al.  Negotiation as a Metaphor for Distributed Problem Solving , 1988, Artificial Intelligence.

[27]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..