Constrained spacecraft attitude control on SO(3) using reference governors and nonlinear model predictive control

We develop nonlinear reference governor and nonlinear model predictive control schemes for constrained spacecraft attitude control. The schemes use the nonlinear discrete-time model of spacecraft dynamics based on the Lie group variational integrator evolving on SO(3) × SO(3). The reference governor is a computationally simpler add-on to the nominal controller, while the model predictive controller provides faster response and better performance. The stability properties and constrained domains of attraction of these schemes are analyzed and their capability to perform global rest-to-rest reorientation maneuvers is established. Simulation results are reported where controllers perform specified reorientation maneuvers while adhering to torque and inclusion zone constraints.

[1]  F. Leite,et al.  The Moser-Veselov equation , 2003 .

[2]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[3]  Mario Zanon,et al.  Nonlinear MPC and MHE for Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes , 2012 .

[4]  M. A. Henson,et al.  Receding horizon control and discontinuous state feedback stabilization , 1995 .

[5]  Jan Swevers,et al.  Spacecraft Attitude Estimation and Sensor Calibration Using Moving Horizon Estimation , 2013 .

[6]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[7]  Ilya V. Kolmanovsky,et al.  Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor , 2002, Autom..

[8]  N. McClamroch,et al.  A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[9]  Alberto Bemporad,et al.  Reference governor for constrained nonlinear systems , 1998, IEEE Trans. Autom. Control..

[10]  D. Bernstein,et al.  Inertia-Free Spacecraft Attitude Tracking with Disturbance Rejection and Almost Global Stabilization , 2009 .

[11]  Nikolaj Nordkvist,et al.  Attitude feedback tracking with optimal attitude state estimation , 2010, Proceedings of the 2010 American Control Conference.

[12]  N. McClamroch,et al.  Rigid-Body Attitude Control , 2011, IEEE Control Systems.

[13]  Anthony M. Bloch,et al.  Hamel's formalism and variational integrators on a sphere , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[14]  Marco Lovera,et al.  Magnetic spacecraft attitude control: a survey and some new results , 2005 .

[15]  Jan Tommy Gravdahl,et al.  Spacecraft attitude control using explicit model predictive control , 2005, Autom..

[16]  Taeyoung Lee Computational geometric mechanics and control of rigid bodies , 2008 .

[17]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[18]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[19]  N. McClamroch,et al.  Lie group variational integrators for the full body problem in orbital mechanics , 2007 .

[20]  Anthony M. Bloch,et al.  Geometric structure-preserving optimal control of a rigid body , 2007, 0712.4400.

[21]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[22]  Taeyoung Lee,et al.  Geometric tracking control of the attitude dynamics of a rigid body on SO(3) , 2010, Proceedings of the 2011 American Control Conference.

[23]  Graham C. Goodwin,et al.  Constrained Control and Estimation , 2005 .

[24]  N. McClamroch,et al.  Optimal Attitude Control of a Rigid Body Using Geometrically Exact Computations on SO(3) , 2006, math/0601424.

[25]  Maher Moakher,et al.  To appear in: SIAM J. MATRIX ANAL. APPL. MEANS AND AVERAGING IN THE GROUP OF ROTATIONS∗ , 2002 .

[26]  G. Martin,et al.  Nonlinear model predictive control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).