Anytime capacity of Markov channels

Several new expressions for the anytime capacity of Sahai and Mitter are presented for a time-varying rate-limited channel with noiseless output feedback. These follow from a parametric characterization obtained in the case of Markov channels, and include an explicit formula for the r-bit Markov erasure channel, as well as formulas for memoryless rate processes including Binomial, Poisson, and Geometric distributions. Beside the memoryless erasure channel and the additive white Gaussian noise channel with input power constraint, these are the only cases where explicit anytime capacity formulas are obtained. At the basis of these results is the study of the threshold function for mth moment stabilization of a scalar linear system controlled over a Markov time-varying digital feedback channel that depends on m and on the channel's parameters. This threshold is shown to be a continuous and strictly decreasing function of m and to have as extreme values the Shannon capacity and the zero-error capacity as m tends to zero and infinity, respectively. Its operational interpretation is that of achievable communication rate, subject to a reliability constraint.

[1]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[2]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[3]  S. Friedland Convex spectral functions , 1981 .

[4]  Erwin Lutwak,et al.  Crame/spl acute/r-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information , 2005, IEEE Transactions on Information Theory.

[5]  Vijay Gupta,et al.  On Stability in the Presence of Analog Erasure Channel Between the Controller and the Actuator , 2010, IEEE Transactions on Automatic Control.

[6]  Munther A. Dahleh,et al.  Feedback stabilization of uncertain systems in the presence of a direct link , 2006, IEEE Transactions on Automatic Control.

[7]  V. Borkar,et al.  LQG Control with Communication Constraints , 1997 .

[8]  Andrey V. Savkin,et al.  Shannon zero error capacity in the problems of state estimation and stabilization via noisy communication channels , 2007, Int. J. Control.

[9]  Richard H. Middleton,et al.  Feedback stabilization over signal-to-noise ratio constrained channels , 2007, Proceedings of the 2004 American Control Conference.

[10]  Young-Han Kim,et al.  Feedback Capacity of Stationary Gaussian Channels , 2006, 2006 IEEE International Symposium on Information Theory.

[11]  John Baillieul,et al.  Feedback Designs in Information-Based Control , 2002 .

[12]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[13]  Massimo Franceschetti,et al.  Stabilization Over Markov Feedback Channels: The General Case , 2013, IEEE Transactions on Automatic Control.

[14]  A. Matveev,et al.  Estimation and Control over Communication Networks , 2008 .

[15]  Q. Xu,et al.  The anytime capacity of AWGN+erasure channel with feedback , 2004 .

[16]  John Baillieul,et al.  Feedback Designs for Controlling Device Arrays with Communication Channel Bandwidth Constraints , 1999 .

[17]  Massimo Franceschetti,et al.  Data Rate Theorem for Stabilization Over Time-Varying Feedback Channels , 2009, IEEE Transactions on Automatic Control.

[18]  K. Loparo,et al.  Almost sure and δmoment stability of jump linear systems , 1994 .

[19]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[20]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[21]  Pravin Varaiya,et al.  Scalar estimation and control with noisy binary observations , 2004, IEEE Transactions on Automatic Control.

[22]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[23]  Charles D. Schaper,et al.  Communications, Computation, Control, and Signal Processing: A Tribute to Thomas Kailath , 1997 .

[24]  Massimo Franceschetti,et al.  LQG Control Approach to Gaussian Broadcast Channels With Feedback , 2010, IEEE Transactions on Information Theory.

[25]  Richard M. Murray,et al.  Optimal LQG control across packet-dropping links , 2007, Syst. Control. Lett..

[26]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[27]  Richard H. Middleton,et al.  Feedback Stabilization Over a First Order Moving Average Gaussian Noise Channel , 2009, IEEE Transactions on Automatic Control.

[28]  Pravin Varaiya,et al.  Capacity, mutual information, and coding for finite-state Markov channels , 1996, IEEE Trans. Inf. Theory.

[29]  Bruno Sinopoli,et al.  Foundations of Control and Estimation Over Lossy Networks , 2007, Proceedings of the IEEE.

[30]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[31]  Panganamala Ramana Kumar,et al.  Cyber–Physical Systems: A Perspective at the Centennial , 2012, Proceedings of the IEEE.

[32]  Tamer Basar,et al.  Control Over Noisy Forward and Reverse Channels , 2011, IEEE Transactions on Automatic Control.

[33]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[34]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[35]  Subhrakanti Dey,et al.  Stability of Kalman filtering with Markovian packet losses , 2007, Autom..

[36]  Victor Solo,et al.  Stabilization and Disturbance Attenuation Over a Gaussian Communication Channel , 2010, IEEE Transactions on Automatic Control.

[37]  Massimo Franceschetti,et al.  Moment stabilization over Markov channels , 2013, 52nd IEEE Conference on Decision and Control.

[38]  Sandro Zampieri,et al.  Anytime reliable transmission of real-valued information through digital noisy channels , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[39]  Tamer Basar,et al.  Optimal control of LTI systems over unreliable communication links , 2006, Autom..

[40]  Joel E. Cohen,et al.  Derivatives of the spectral radius as a function of non-negative matrix elements , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[41]  Anant Sahai,et al.  Anytime information theory , 2001 .

[42]  Nicola Elia,et al.  Remote stabilization over fading channels , 2005, Syst. Control. Lett..

[43]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[44]  Graham C. Goodwin,et al.  Control system design subject to SNR constraints , 2010, Autom..

[45]  Sean P. Meyn,et al.  Random-Time, State-Dependent Stochastic Drift for Markov Chains and Application to Stochastic Stabilization Over Erasure Channels , 2010, IEEE Transactions on Automatic Control.

[46]  John S. Baras,et al.  Optimal Output Feedback Control Using Two Remote Sensors Over Erasure Channels , 2009, IEEE Transactions on Automatic Control.

[47]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[48]  Massimo Franceschetti,et al.  Control-Theoretic Approach to Communication With Feedback , 2012, IEEE Transactions on Automatic Control.

[49]  Serdar Yüksel,et al.  Stochastic Stabilization of Noisy Linear Systems With Fixed-Rate Limited Feedback , 2010, IEEE Transactions on Automatic Control.

[50]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[51]  Massimo Franceschetti,et al.  Elements of Information Theory for Networked Control Systems , 2014 .

[52]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[53]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.