Learning from learning machines: a new generation of AI technology to meet the needs of science

We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery. The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data. If we address the fundamental challenges associated with “bridging the gap” between domain-driven scientific models and data-driven AI learning machines, then we expect that these AI models can transform hypothesis generation, scientific discovery, and the scientific process itself.

[1]  A. Aspuru-Guzik,et al.  Self-driving laboratory for accelerated discovery of thin-film materials , 2019, Science Advances.

[2]  Michael W. Mahoney,et al.  RandNLA , 2016, Commun. ACM.

[3]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[4]  Michael W. Mahoney,et al.  Characterizing possible failure modes in physics-informed neural networks , 2021, NeurIPS.

[5]  Salah Sukkarieh,et al.  Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review , 2018, Comput. Electron. Agric..

[6]  Clifford H. Wagner Simpson's Paradox in Real Life , 1982 .

[7]  Kjell A. Doksum,et al.  Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition , 2015 .

[8]  Michael W. Mahoney,et al.  Improved Guarantees and a Multiple-descent Curve for Column Subset Selection and the Nystrom Method (Extended Abstract) , 2021, IJCAI.

[9]  Nidhi Kalra,et al.  Measuring Automated Vehicle Safety: Forging a Framework , 2018 .

[10]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[11]  Zhenyu Liao,et al.  A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent , 2020, NeurIPS.

[12]  Been Kim,et al.  Sanity Checks for Saliency Maps , 2018, NeurIPS.

[13]  Pieter Abbeel,et al.  Decoupling Representation Learning from Reinforcement Learning , 2020, ICML.

[14]  Maziar Raissi,et al.  Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations , 2018, J. Mach. Learn. Res..

[15]  Nisheeth K. Vishnoi,et al.  A local spectral method for graphs: with applications to improving graph partitions and exploring data graphs locally , 2009, J. Mach. Learn. Res..

[16]  Wulfram Gerstner,et al.  Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size , 2016, PLoS Comput. Biol..

[17]  Michael W. Mahoney,et al.  Adversarially-Trained Deep Nets Transfer Better , 2020, ArXiv.

[18]  J. Ioannidis,et al.  Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies , 2020, BMJ.

[19]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[20]  John A. Pople,et al.  Nobel Lecture: Quantum chemical models , 1999 .

[21]  Michael W. Mahoney,et al.  Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning , 2018, J. Mach. Learn. Res..

[22]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[23]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[24]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[25]  Erwan Scornet,et al.  Neural Random Forests , 2016, Sankhya A.

[26]  S. Kak Information, physics, and computation , 1996 .

[27]  Sonja Grün,et al.  The Scientific Case for Brain Simulations , 2019, Neuron.

[28]  Chandan Singh,et al.  Definitions, methods, and applications in interpretable machine learning , 2019, Proceedings of the National Academy of Sciences.

[29]  Dewei Li,et al.  Survey and experimental study on metric learning methods , 2018, Neural Networks.

[30]  G. A. Young,et al.  High‐dimensional Statistics: A Non‐asymptotic Viewpoint, Martin J.Wainwright, Cambridge University Press, 2019, xvii 552 pages, £57.99, hardback ISBN: 978‐1‐1084‐9802‐9 , 2020, International Statistical Review.

[31]  Bin Yu,et al.  Learning epistatic polygenic phenotypes with Boolean interactions , 2020 .

[32]  Michael I. Jordan,et al.  Distribution-Free, Risk-Controlling Prediction Sets , 2021, J. ACM.

[33]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[34]  Bin Yu,et al.  Three principles of data science: predictability, computability, and stability (PCS) , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[35]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[36]  Michela Paganini,et al.  The Scientific Method in the Science of Machine Learning , 2019, ArXiv.

[37]  Ewen Callaway,et al.  ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures , 2020, Nature.

[38]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[39]  真人 岡田,et al.  AI for Scienceとデータ駆動科学 , 2016 .

[40]  Andrew M. Watkins,et al.  Geometric deep learning of RNA structure , 2021, Science.

[41]  P. Bickel,et al.  Sex Bias in Graduate Admissions: Data from Berkeley , 1975, Science.

[42]  Mikhail Belkin,et al.  Reconciling modern machine-learning practice and the classical bias–variance trade-off , 2018, Proceedings of the National Academy of Sciences.

[43]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[44]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[45]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[46]  Pierre Gentine,et al.  Could Machine Learning Break the Convection Parameterization Deadlock? , 2018, Geophysical Research Letters.

[47]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[48]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[49]  Carlos A. Silva,et al.  On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. , 2020, Radiology. Artificial intelligence.

[50]  Oliver Rübel,et al.  International Neuroscience Initiatives through the Lens of High-Performance Computing , 2018, Computer.

[51]  Michael W. Mahoney,et al.  Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data , 2020, Nature Communications.

[52]  David Kainer,et al.  Can exascale computing and explainable artificial intelligence applied to plant biology deliver on the United Nations sustainable development goals? , 2020, Current opinion in biotechnology.

[53]  Alexandre M. Bayen,et al.  Computational techniques for the verification of hybrid systems , 2003, Proc. IEEE.

[54]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[55]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[56]  Jay D Keasling,et al.  Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism , 2020, Nature Communications.

[57]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[58]  Bin Yu,et al.  Refining interaction search through signed iterative Random Forests , 2018, bioRxiv.

[59]  Sara van de Geer,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .

[60]  A. Choudhary,et al.  Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science , 2016 .

[61]  Francisco M. De La Vega,et al.  Genomics for the world , 2011, Nature.

[62]  Gisbert Schneider,et al.  Automating drug discovery , 2017, Nature Reviews Drug Discovery.

[63]  Daniel Walton,et al.  The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology , 2019, Journal of Geophysical Research: Atmospheres.

[64]  Pablo Carbonell,et al.  Opportunities at the Intersection of Synthetic Biology, Machine Learning, and Automation. , 2019, ACS synthetic biology.

[65]  Dmitriy Morozov,et al.  Persistent homology advances interpretable machine learning for nanoporous materials , 2020, ArXiv.

[66]  Gisbert Schneider,et al.  Deep Learning in Drug Discovery , 2016, Molecular informatics.

[67]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[68]  Jorge Gonçalves,et al.  Crowdsourcing Perceptions of Fair Predictors for Machine Learning , 2019, Proc. ACM Hum. Comput. Interact..

[69]  Joseph D. Janizek,et al.  Explaining Explanations: Axiomatic Feature Interactions for Deep Networks , 2020, J. Mach. Learn. Res..

[70]  Hector Garcia Martin,et al.  A machine learning Automated Recommendation Tool for synthetic biology , 2019, Nature Communications.

[71]  Max Tegmark,et al.  AI Feynman: A physics-inspired method for symbolic regression , 2019, Science Advances.

[72]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[73]  P. Bickel,et al.  Local polynomial regression on unknown manifolds , 2007, 0708.0983.

[74]  G. Box Science and Statistics , 1976 .

[75]  Colin B. Clement,et al.  Visualizing probabilistic models and data with Intensive Principal Component Analysis , 2018, Proceedings of the National Academy of Sciences.

[76]  Peter Norvig,et al.  The Unreasonable Effectiveness of Data , 2009, IEEE Intelligent Systems.

[77]  Rui Xu,et al.  Discovering Symbolic Models from Deep Learning with Inductive Biases , 2020, NeurIPS.

[78]  Dumitru Erhan,et al.  The (Un)reliability of saliency methods , 2017, Explainable AI.

[79]  Bin Yu,et al.  Interpreting Convolutional Neural Networks Through Compression , 2017, ArXiv.

[80]  Terri L. Moore,et al.  Regression Analysis by Example , 2001, Technometrics.

[81]  Claire J. Tomlin,et al.  Statistics for sparse, high-dimensional, and nonparametric system identification , 2009, 2009 IEEE International Conference on Robotics and Automation.

[82]  Michael W. Mahoney,et al.  Post-mortem on a deep learning contest: a Simpson's paradox and the complementary roles of scale metrics versus shape metrics , 2021, ArXiv.

[83]  Michael W. Mahoney,et al.  MAPPING THE SIMILARITIES OF SPECTRA: GLOBAL AND LOCALLY-BIASED APPROACHES TO SDSS GALAXIES , 2016, ArXiv.

[84]  Daniel A. Jacobson,et al.  Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence. , 2019, Trends in biotechnology.

[85]  Kristofer E. Bouchard,et al.  Union of Intersections ( UoI ) for interpretable data driven discovery and prediction in neuroscience , 2018 .

[86]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[87]  Max Tegmark,et al.  AI Poincaré: Machine Learning Conservation Laws from Trajectories , 2021, Physical review letters.

[88]  Giles Hooker,et al.  Please Stop Permuting Features: An Explanation and Alternatives , 2019, ArXiv.

[89]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[90]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[91]  H. Birx,et al.  The Mismeasure of Man , 1981 .

[92]  Emanuele Neri,et al.  Artificial intelligence: Who is responsible for the diagnosis? , 2020, La radiologia medica.

[93]  Olga Kononova,et al.  Unsupervised word embeddings capture latent knowledge from materials science literature , 2019, Nature.

[94]  David Filliat,et al.  Decoupling feature extraction from policy learning: assessing benefits of state representation learning in goal based robotics , 2018, ArXiv.

[95]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[96]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[97]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[98]  Wei Chen,et al.  Learning to predict the cosmological structure formation , 2018, Proceedings of the National Academy of Sciences.

[99]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[100]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[101]  Wojciech Samek,et al.  Explainable AI: Interpreting, Explaining and Visualizing Deep Learning , 2019, Explainable AI.

[102]  Ajmal Mian,et al.  Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey , 2018, IEEE Access.

[103]  Judea Pearl,et al.  The seven tools of causal inference, with reflections on machine learning , 2019, Commun. ACM.

[104]  Mason A. Porter,et al.  Think Locally, Act Locally: The Detection of Small, Medium-Sized, and Large Communities in Large Networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  Philipp J. Keller,et al.  Light-sheet functional imaging in fictively behaving zebrafish , 2014, Nature Methods.

[106]  C. Cole,et al.  The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers , 2018, Nature Reviews Cancer.

[107]  Yehuda Koren,et al.  Lessons from the Netflix prize challenge , 2007, SKDD.

[108]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[109]  L. Hood,et al.  The P4 Health Spectrum - A Predictive, Preventive, Personalized and Participatory Continuum for Promoting Healthspan. , 2017, Progress in cardiovascular diseases.

[110]  R. Gibbs,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Epistasis dominates the genetic architecture of Drosophila quantitative traits , 2012 .

[111]  Michael W. Mahoney,et al.  PCA-Correlated SNPs for Structure Identification in Worldwide Human Populations , 2007, PLoS genetics.