Least-restrictive move-blocking model predictive control

Move-blocking lowers the computational complexity of model predictive control (MPC) problems by reducing the number of optimization variables. However, this may render states close to constraints infeasible. Thus move-blocking generally results in control laws that are restrictive; the controller domains may be unacceptably and unnecessarily small. Furthermore, different move-blocking strategies may result in controller domains of different sizes, all other factors being equal. In this paper an approach is proposed to design move-blocking MPC control laws that are least-restrictive, i.e. the controller domain is equal to the maximum controlled invariant set. The domains of different move-blocking controllers are then by design equal to each other. This allows comparison of differing move-blocking strategies based on cost performance only, without needing to consider domain size also. Thus this paper is a step towards being able to derive optimal move-blocking MPC control laws.

[1]  T. Johansen,et al.  COMPLEXITY REDUCTION IN EXPLICIT LINEAR MODEL PREDICTIVE CONTROL , 2002 .

[2]  M. Morari,et al.  Move blocking strategies in receding horizon control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[3]  Graham C. Goodwin,et al.  Receding horizon control applied to optimal mine planning , 2006, Autom..

[4]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[5]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[6]  Jun-ichi Imura,et al.  Exact Cost Performance Analysis of Piecewise Affine Systems , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[7]  Lars Grüne,et al.  On the Infinite Horizon Performance of Receding Horizon Controllers , 2008, IEEE Transactions on Automatic Control.

[8]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[9]  Jun-ichi Imura,et al.  Least restrictive move-blocking model predictive control , 2008 .

[10]  Jun-ichi Imura,et al.  Controlled invariant feasibility - A general approach to enforcing strong feasibility in MPC applied to move-blocking , 2009, Autom..

[11]  Franco Blanchini,et al.  Dynamic augmentation and complexity reduction of set-based constrained control , 2008 .

[12]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[13]  F. Blanchini Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions , 1994, IEEE Trans. Autom. Control..

[14]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[15]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[16]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[17]  Jun-ichi Imura,et al.  Performance measures in model predictive control with non-linear prediction horizon time-discretization , 2007, 2007 European Control Conference (ECC).

[18]  Jun-ichi Imura,et al.  Recursive feasibility guarantees in move-blocking MPC , 2007, 2007 46th IEEE Conference on Decision and Control.

[19]  Mark Rice,et al.  A numerically robust state-space approach to stable-predictive control strategies , 1998, Autom..

[20]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[21]  John Lygeros,et al.  Controlled Invariance of Discrete Time Systems , 2000, HSCC.

[22]  Manfred Morari,et al.  Blocking parameterizations for improving the computational tractability of affine disturbance feedback MPC problems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[23]  Jun-ichi Imura,et al.  STRONG FEASIBILITY IN INPUT-MOVE-BLOCKING MODEL PREDICTIVE CONTROL , 2007 .

[24]  Francesco Borrelli,et al.  Constrained Optimal Control of Linear and Hybrid Systems , 2003, IEEE Transactions on Automatic Control.

[25]  J. Hennet,et al.  (A, B)-Invariant Polyhedral Sets of Linear Discrete-Time Systems , 1999 .

[26]  H. Unbehauen,et al.  Nonlinear predictive control with multirate optimisation step lengths , 2005 .