Multilayer dynamic link networks for establishing image point correspondences and visual object recognition

The major tasks for automatic object recognition are segmentation of the image and solving the correspondence problem, i.e. reliably finding the points in the image that belong to points in a given model. Once these correspondences are found, the local similarities can be used to assign one model out of a set of known ones to the image. This work defines a suitable representation for models and images based on a multiresolution transform with Gabor wavelets. The properties of such transforms are discussed in detail. Then a neural network with dynamic links and short-term activity correlations is presented that estimates these correspondences in several layers coarse-to-fine. It is formalized into a nonlinear dynamical system. Simulations show its capabilities that extend earlier systems by background invariance and faster convergence. Finally, the central procedures of the network are put into an algorithmic form, which allows fast implementation on conventional hardware and uses the correspondences for the successful recognition of human faces out of a gallery of 83 independent of their hairstyle. This demonstrates the potential for the recognition of objects independently of the background, which was not possible with earlier systems.

[1]  B. Pascal Pensées de Pascal sur la religion et sur quelques autres sujets , .

[2]  L. Wittgenstein Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.

[3]  H. Carr Tractatus Logico-Philosophicus , 1923, Nature.

[4]  P. Dirac Principles of Quantum Mechanics , 1982 .

[5]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[6]  Dennis Gabor,et al.  Theory of communication , 1946 .

[7]  W. Pitts,et al.  How we know universals; the perception of auditory and visual forms. , 1947, The Bulletin of mathematical biophysics.

[8]  M. Mead,et al.  Cybernetics , 1953, The Yale Journal of Biology and Medicine.

[9]  W. Pauli Phänomen und physikalische Realität , 1957 .

[10]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[11]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[12]  J. Orbach Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. , 1962 .

[13]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[14]  D. N. Spinelli,et al.  Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats , 1970, Science.

[15]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[16]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[17]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[18]  C. von der Malsburg Self-organization of orientation sensitive cells in the striate cortex. , 1973, Kybernetik.

[19]  C. Blakemore,et al.  Environmental Modification of the Visual Cortex and the Neural Basis of Learning and Memory , 1973, Nature.

[20]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[21]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[22]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[23]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  H. Wilson,et al.  Threshold visibility of frequency gradient patterns , 1977, Vision Research.

[25]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[26]  A. G. Brown FROM NEURON TO BRAIN: A CELLULAR APPROACH TO THE FUNCTION OF THE NERVOUS SYSTEM. By Stephen W. Kuffler and John G. Nicholls. Sinauer Associates Inc., Sunderland, Massachusetts, 1976. Pp. xviii+486. $12.00 (paper), $18.00 (boards) , 1977 .

[27]  R. A. Davidoff From Neuron to Brain , 1977, Neurology.

[28]  H. Haken,et al.  Analytical treatment of pattern formation in the Gierer-Meinhardt model of morphogenesis , 1978 .

[29]  P. Halmos,et al.  Bounded integral operators on L²spaces , 1978 .

[30]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[31]  D J Willshaw,et al.  A marker induction mechanism for the establishment of ordered neural mappings: its application to the retinotectal problem. , 1979, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  S. Amari Topographic organization of nerve fields , 1979, Neuroscience Letters.

[33]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[34]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[35]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[36]  K. D. De Valois,et al.  Spatial vision. , 1980, Annual review of psychology.

[37]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[38]  Douglas R. Hofstadter,et al.  Godel, Escher, Bach: An Eternal Golden Braid , 1981 .

[39]  B. Boycott,et al.  Dendritic territories of cat retinal ganglion cells , 1981, Nature.

[40]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[41]  M. B. Pour-El,et al.  The wave equation with computable initial data such that its unique solution is not computable , 1981 .

[42]  M. Hayes The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .

[43]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Jörg H. Siekmann,et al.  Einführung in die Künstliche Intelligenz , 1982, KIFS.

[45]  H. A.F.,et al.  DEVELOPMENT OF RETINOTOPIC PROJECTIONS: AN ANALYTIC TREATMENT , 1983 .

[46]  Ch. von der Malsburg,et al.  How are Nervous Structures Organized , 1983 .

[47]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[48]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[49]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[50]  H. Wilson,et al.  Spatial frequency tuning of orientation selective units estimated by oblique masking , 1983, Vision Research.

[51]  James R. Bergen,et al.  Parallel versus serial processing in rapid pattern discrimination , 1983, Nature.

[52]  A. J. Mistlin,et al.  Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. , 1984, Human neurobiology.

[53]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[54]  F. Crick Function ofthethalamic reticular complex: Thesearchlight , 1984 .

[55]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[56]  C. Malsburg Nervous Structures with Dynamical Links , 1985 .

[57]  E. Rolls,et al.  Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey , 1985, Brain Research.

[58]  Geoffrey E. Hinton,et al.  Shape Recognition and Illusory Conjunctions , 1985, IJCAI.

[59]  A. Grossmann,et al.  DECOMPOSITION OF FUNCTIONS INTO WAVELETS OF CONSTANT SHAPE, AND RELATED TRANSFORMS , 1985 .

[60]  B Julesz,et al.  "Where" and "what" in vision. , 1985, Science.

[61]  E. Rolls,et al.  Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey , 1985, Vision Research.

[62]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[63]  C. Malsburg,et al.  Statistical Coding and Short-Term Synaptic Plasticity: A Scheme for Knowledge Representation in the Brain , 1986 .

[64]  C. von der Malsburg,et al.  Am I Thinking Assemblies , 1986 .

[65]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[66]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[67]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[69]  Wolf Singer,et al.  A self-organizing neural network sharing features of the mammalian visual system , 1987 .

[70]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[71]  B. A. Baldwin,et al.  Cells in temporal cortex of conscious sheep can respond preferentially to the sight of faces. , 1987, Science.

[72]  R. Watt Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[73]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[74]  H. Mohr Der Ursprung biologischer Information – Zur Naturphilosophie der Lebensentstehung. Von B.‐O. Küppers. Mit einem Vorwort von C. F. von Weizsäcker. 319 S., 26 Abb. Piper, München 1986. DM 39,80 , 1987 .

[75]  Elie Bienenstock,et al.  A neural network for invariant pattern recognition. , 1987 .

[76]  Elie Bienenstock,et al.  A neural network for the retrieval of superimposed connection patterns , 1987 .

[77]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[78]  A. J. Mistlin,et al.  Visual neurones responsive to faces , 1987, Trends in Neurosciences.

[79]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[80]  James A. Anderson,et al.  Neurocomputing: Foundations of Research , 1988 .

[81]  S. Mallat,et al.  Multiresolution representations and wavelets , 1988 .

[82]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[83]  S. Amari Dynamical stability of formation of cortical maps , 1988 .

[84]  Christoph von der Malsburg,et al.  Pattern recognition by labeled graph matching , 1988, Neural Networks.

[85]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[86]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[87]  Helmut Glünder Invariante Bildbeschreibung mit Hilfe von Autovergleichs-Funktionen , 1988 .

[88]  A. Grossmann,et al.  Wavelet Transforms and Edge Detection , 1988 .

[89]  C. v. d. Malsburg Goal and architecture of neural computers , 1988 .

[90]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[91]  Richard Kronland-Martinet,et al.  Reading and Understanding Continuous Wavelet Transforms , 1989 .

[92]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[93]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[94]  P. Anandan,et al.  Optimization in Model Matching and Perceptual Organization , 1989, Neural Computation.

[95]  Gottfried Jetschke,et al.  Mathematik der Selbstorganisation , 1989 .

[96]  D. Burr,et al.  Evidence for edge and bar detectors in human vision , 1989, Vision Research.

[97]  Y. Meyer,et al.  Bases d'ondelettes dans des ouverts de Rn , 1989 .

[98]  P. Bertrand,et al.  A Relativistic Wigner Function Affiliated with the Weyl-Poincaré Group , 1989 .

[99]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[100]  William A. Phillips,et al.  On the acquisition of object concepts from sensory data , 1989 .

[101]  C. von der Malsburg,et al.  Distortion invariant object recognition by matching hierarchically labeled graphs , 1989, International 1989 Joint Conference on Neural Networks.

[102]  J. Antoine Poincaré Coherent States and Relativistic Phase Space Analysis , 1989 .

[103]  Antonio R. Damasio,et al.  The Brain Binds Entities and Events by Multiregional Activation from Convergence Zones , 1989, Neural Computation.

[104]  Terry Caelli,et al.  Invariant pattern recognition using multiple filter image representations , 1989, Comput. Vis. Graph. Image Process..

[105]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[106]  R. Murenzi Wavelet Transforms Associated to the n-Dimensional Euclidean Group with Dilations: Signal in More Than One Dimension , 1990 .

[107]  Joachim M. Buhmann,et al.  Size and distortion invariant object recognition by hierarchical graph matching , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[108]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  D G Stork,et al.  Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? , 1990, Journal of the Optical Society of America. A, Optics and image science.

[110]  Christoph von der Malsburg,et al.  Network self-organization , 1990 .

[111]  A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .

[112]  G. Hauske,et al.  Die Bedeutung des analytischen Signals in Bildanalyse und Bildcodierung , 1990 .

[113]  C. Blakemore,et al.  Vision: The iconic bottleneck and the tenuous link between early visual processing and perception , 1990 .

[114]  Christoph von der Malsburg CONSIDERATIONS FOR A VISUAL ARCHITECTURE , 1990 .

[115]  R. Omnes From Hilbert space to common sense : a synthesis of recent progress in the interpretation of quantum mechanics , 1990 .

[116]  Peter König,et al.  Coherency detection and response segregation by synchronizing and desynchronizing delay connections in a neuronal oscillator model , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[117]  J.A. Anderson,et al.  Directions for research , 1990 .

[118]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[119]  Selbstorganisation in der Zeit , 1990 .

[120]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[121]  Jun Zhang Dynamics and Formation of Self-Organizing Maps , 1991, Neural Computation.

[122]  Rolf P. Würtz,et al.  Bilderkennung mit dynamischen Neuronennetzen , 1991, Wissensbasierte Systeme.

[123]  David J. Fleet,et al.  Phase-based disparity measurement , 1991, CVGIP Image Underst..

[124]  Eytan Domany,et al.  Models of Neural Networks I , 1991 .

[125]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[126]  B. MacLennan Gabor Representations of Spatiotemporal Visual Images , 1991 .

[127]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[128]  K. A. Flaton,et al.  2d object recognition by adaptive feature extraction and dynamical link graph matching , 1992 .

[129]  Joachim M. Buhmann,et al.  Object recognition with Gabor functions in the dynamic link architecture , 1992 .

[130]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[131]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[132]  Rolf P. Wrtz,et al.  Neural Mechanisms of Elastic Pattern Matching , 1992 .

[133]  David J. Fleet Measurement of image velocity , 1992 .

[134]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[135]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[136]  David J. Chalmers,et al.  High-level perception, representation, and analogy: a critique of artificial intelligence methodology , 1992, J. Exp. Theor. Artif. Intell..

[137]  Sebastian Tölg Strukturuntersuchungen zur Informationsverarbeitung in neuronaler Architektur am Beispiel der Modellierung von Augenbewegungen für aktives Sehen , 1992 .

[138]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[139]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[140]  Gary Whitten,et al.  Scale Space Tracking and Deformable Sheet Models for Computational Vision , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[141]  K. Seip Wavelets in H 2 (R): sampling, interpolation, and phase space density , 1993 .

[142]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[143]  Christoph von der Malsburg,et al.  A Neural System for the Recognition of Partially Occluded Objects in Cluttered Scenes: A Pilot Study , 1993, Int. J. Pattern Recognit. Artif. Intell..

[144]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[145]  Wolfgang Konen,et al.  Applying Dynamic Link Matching to Object Recognition in Real World Images , 1993 .

[146]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[147]  S. Mallat,et al.  Second generation compact image coding with wavelets , 1993 .

[148]  Heinrich H. Bülthoff,et al.  Stereovision without localized image features , 1993 .

[149]  Wolfgang Konen,et al.  Learning to Generalize from Single Examples in the Dynamic Link Architecture , 1993, Neural Computation.

[150]  Zhaoping Li,et al.  Toward a Theory of the Striate Cortex , 1994, Neural Computation.

[151]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[152]  Wolfgang Konen,et al.  A fast dynamic link matching algorithm for invariant pattern recognition , 1994, Neural Networks.

[153]  I. Biederman,et al.  Chance forced choice recognition memory for identifiable RSVP object pictures , 1994 .

[154]  F. Ventriglia Neural Modeling and Neural Networks , 1994 .

[155]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[156]  Jan C. Vorbrüggen Zwei Modelle zur datengetriebenen Segmentierung visueller Daten , 1995 .

[157]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.