Structure vs. randomness for bilinear maps

We prove that the slice rank of a 3-tensor (a combinatorial notion introduced by Tao in the context of the cap-set problem), the analytic rank (a Fourier-theoretic notion introduced by Gowers and Wolf), and the geometric rank (a recently introduced algebro-geometric notion) are all equivalent up to an absolute constant. As a corollary, we obtain strong trade-offs on the arithmetic complexity of a biased bililnear map, and on the separation between computing a bilinear map exactly and on average. Our result settles open questions of Haramaty and Shpilka [STOC 2010], and of Lovett [Discrete Anal., 2019] for 3-tensors.

[1]  Guy Moshkovitz,et al.  An Optimal Inverse Theorem , 2021, ArXiv.

[2]  Karim A. Adiprasito,et al.  On the Schmidt and analytic ranks for trilinear forms , 2021, 2102.03659.

[3]  Stephen R. Mahaney Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[4]  Shachar Lovett The analytic rank of tensors and its applications , 2018, 1806.09179.

[5]  T. Ziegler,et al.  Properties of High Rank Subvarieties of Affine Spaces , 2019, Geometric and Functional Analysis.

[6]  Elad Haramaty,et al.  On the structure of cubic and quartic polynomials , 2009, STOC '10.

[7]  Stephen D. Cohen,et al.  The distribution of polynomials over finite fields , 1970 .

[8]  Oliver Janzer Polynomial bound for the partition rank vs the analytic rank of tensors , 2019, 1902.11207.

[9]  H. Derksen The G-stable rank for tensors , 2020, 2002.08435.

[10]  Joshua Grochow NP-hard sets are not sparse unless P=NP: An exposition of a simple proof of Mahaney's Theorem, with applications , 2016, Electron. Colloquium Comput. Complex..

[11]  Shachar Lovett,et al.  Bias vs structure of polynomials in large fields, and applications in effective algebraic geometry and coding theory , 2015, Electron. Colloquium Comput. Complex..

[12]  Terence Tao,et al.  The Kakeya set and maximal conjectures for algebraic varieties over finite fields , 2009, 0903.1879.

[13]  T. Ziegler,et al.  Approximate cohomology , 2018 .

[14]  W. Schmidt The density of integer points on homogeneous varieties , 1985 .

[15]  Josh Alman,et al.  A Refined Laser Method and Faster Matrix Multiplication , 2020, SODA.

[16]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[17]  Markus Bläser,et al.  Fast Matrix Multiplication , 2013, Theory Comput..

[18]  Jacob Tsimerman,et al.  Sum–product estimates for rational functions , 2010, 1002.2554.

[19]  Mike D. Atkinson,et al.  LARGE SPACES OF MATRICES OF BOUNDED RANK , 1980 .

[20]  Jin-Yi Cai,et al.  Sparse Hard Sets for P: Resolution of a Conjecture of Hartmanis , 1999, J. Comput. Syst. Sci..

[21]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[22]  Shachar Lovett,et al.  Worst Case to Average Case Reductions for Polynomials , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[24]  Jin-Yi Cai,et al.  The resolution of a Hartmanis conjecture , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[25]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[26]  Harm Derksen,et al.  On non-commutative rank and tensor rank , 2016, 1606.06701.

[27]  Ben Green,et al.  The distribution of polynomials over finite fields, with applications to the Gowers norms , 2007, Contributions Discret. Math..

[28]  Neil Immerman,et al.  Sparse sets in NP-P: Exptime versus nexptime , 1983, STOC.

[29]  Christophe Reutenauer,et al.  COMMUTATIVE/NONCOMMUTATIVE RANK OF LINEAR MATRICES AND SUBSPACES OF MATRICES OF LOW RANK , 2004 .

[30]  Osamu Watanabe,et al.  On polynomial time bounded truth-table reducibility of NP sets to sparse sets , 1990, STOC '90.

[31]  L. Milicevic Polynomial bound for partition rank in terms of analytic rank , 2019, Geometric and Functional Analysis.

[32]  Steven Fortune,et al.  A Note on Sparse Complete Sets , 1978, SIAM J. Comput..

[33]  Avi Wigderson,et al.  Operator Scaling: Theory and Applications , 2015, Found. Comput. Math..

[34]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[35]  Shachar Lovett,et al.  Variety Evasive Sets , 2013, computational complexity.