Modeling values for TU-games using generalized versions of consistency, standardness and the null player property

In the paper we discuss three general properties of values of TU-games: $$\uplambda $$λ-standardness, general probabilistic consistency and some modifications of the null player property. Necessary and sufficient conditions for different families of efficient, linear and symmetric values are given in terms of these properties. It is shown that the results obtained can be used to get new axiomatizations of several classical values of TU-games.

[1]  Emilio Calvo,et al.  Random marginal and random removal values , 2008, Int. J. Game Theory.

[2]  René van den Brink,et al.  Null or nullifying players: The difference between the Shapley value and equal division solutions , 2007, J. Econ. Theory.

[3]  Yukihiko Funaki,et al.  Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games , 2009 .

[4]  Theo Driessen,et al.  Extensions of Hart and Mas-Colell’s Consistency to Efficient, Linear, and Symmetric Values for TU-Games , 2003 .

[5]  Tadeusz Radzik,et al.  A solidarity value forn-person transferable utility games , 1994 .

[6]  André Casajus,et al.  Null players, solidarity, and the egalitarian Shapley values , 2013 .

[7]  Theo S. H. Driessen,et al.  On a family of values for TU-games generalizing the Shapley value , 2013, Math. Soc. Sci..

[8]  Marcin Malawski “Procedural” values for cooperative games , 2013, Int. J. Game Theory.

[9]  Consistent restricted Shapley values , 1997 .

[10]  Luis Ruiz,et al.  The Family of Least Square Values for Transferable Utility Games , 1998 .

[11]  B. Peleg,et al.  Introduction to the Theory of Cooperative Games , 1983 .

[12]  Robert J. Weber,et al.  Probabilistic Values for Games , 1977 .

[13]  L. Shapley,et al.  The Shapley Value , 1994 .

[14]  L. Shapley A Value for n-person Games , 1988 .

[15]  Theo S. H. Driessen,et al.  A Survey of Consistency Properties in Cooperative Game Theory , 1991, SIAM Rev..

[16]  RenÚ Levinsk,et al.  Global Monotonicity of Values of Cooperative Games: An Argument Supporting the Explanatory Power of ShapleyÆs Approach , 2001 .

[17]  Yukihiko Funaki,et al.  Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values , 2007, Soc. Choice Welf..

[18]  Tadeusz Radzik,et al.  Is the solidarity value close to the equal split value? , 2013, Math. Soc. Sci..

[19]  Y. Funaki,et al.  Axiomatization and Implementation of Discounted Shapley Values , 2010 .

[20]  Guillermo Owen,et al.  GLOBAL MONOTONICITY OF VALUES OF COOPERATIVE GAMES { An argument supporting the explanatory power of Shapley ' s approach , 1998 .

[21]  R. Joosten Dynamics, equilibria, and values , 1996 .

[22]  S. Hart,et al.  Bargaining and Value , 1996 .

[23]  S. Hart,et al.  Potential, value, and consistency , 1989 .