Stochastic cloning: a generalized framework for processing relative state measurements

Introduces a generalized framework, termed "stochastic cloning," for processing relative state measurements within a Kalman filter estimator. The main motivation and application for this methodology is the problem of fusing displacement measurements with position estimates for mobile robot localization. Previous approaches have ignored the developed interdependencies (cross-correlation terms) between state estimates of the same quantities at different time instants. By directly expressing relative state measurements in terms of previous and current state estimates, the effect of these crosscorrelation terms on the estimation process is analyzed and considered during updates. Simulation and experimental results validate this approach.

[1]  Stergios I. Roumeliotis,et al.  Robust mobile robot localization: from single-robot uncertainties to multi-robot interdependencies , 2000 .

[2]  Gaurav S. Sukhatme,et al.  Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[4]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[5]  Sebastian Thrun,et al.  Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.

[6]  Ben J. A. Kröse,et al.  Supervised Dimension Reduction of Intrinsically Low-Dimensional Data , 2002, Neural Computation.

[7]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[8]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Hugh F. Durrant-Whyte,et al.  Inertial navigation systems for mobile robots , 1995, IEEE Trans. Robotics Autom..

[10]  Paul S. Schenker,et al.  Improved Rover State Estimation in Challenging Terrain , 1999, Auton. Robots.

[11]  Hobart R. Everett,et al.  Sensors for Mobile Robots , 1995 .

[12]  Stergios I. Roumeliotis,et al.  Weighted range sensor matching algorithms for mobile robot displacement estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[13]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Günther Schmidt,et al.  Fusing range and intensity images for mobile robot localization , 1999, IEEE Trans. Robotics Autom..

[15]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[16]  Gaurav S. Sukhatme,et al.  Smoother based 3D attitude estimation for mobile robot localization , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[17]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[18]  L. Matthies,et al.  Precise Image-Based Motion Estimation for Autonomous Small Body Exploration , 2000 .

[19]  Maja J. Mataric,et al.  Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..

[20]  Eric Krotkov,et al.  Dead reckoning for a lunar rover on uneven terrain , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[21]  Liqiang Feng,et al.  Measurement and correction of systematic odometry errors in mobile robots , 1996, IEEE Trans. Robotics Autom..

[22]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[23]  Clark F. Olson,et al.  Maximum likelihood rover localization by matching range maps , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).