The complexity of the membership problem for some extensions of context-free languagest†

The time and tape complexity of some families of languages defined in the literature by altering methods of generation by context-free grammars is considered. Specifically; it is shown that the following families of languages can be recognized by deterministic multitape Turing machines either in polynomial time or within (log n)2 tape: 1) the context independent developmental (EOL) languages; 2) the simple matrix languages; 3) the languages generated by derivation restricted state grammars.: 4) the languages generated by linear context-free grammars with certain non-regular control sets; 5) the languages generated by certain classes of vector grammars. In fact, these languages are of the same tape complexity as context-free languages. Other results indicate the complexity of EDOL languages and the effects on complexity of applying the homomorphic replication operator to regular and context-free languages.

[1]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[2]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[3]  Ivan Hal Sudborough,et al.  A Note on Tape-Bounded Complexity Classes and Linear Context-Free languages , 1975, JACM.

[4]  Grzegorz Rozenberg,et al.  Developmental systems and languages , 1972, STOC.

[5]  Oscar H. Ibarra,et al.  Simple Matrix Languages , 1970, Inf. Control..

[6]  Ivan Hal Sudborough,et al.  Some Remarks on Multihead Automata , 1977, RAIRO Theor. Informatics Appl..

[7]  Seymour Ginsburg,et al.  One-way stack automata , 1967, JACM.

[8]  Stephen A. Cook,et al.  Characterizations of Pushdown Machines in Terms of Time-Bounded Computers , 1971, J. ACM.

[9]  Ivan Hal Sudborough The Time and Tape Complexity of Developmental Languages , 1977, ICALP.

[10]  Armin B. Cremers,et al.  On Matrix Languages , 1973, Inf. Control..

[11]  Jan van Leeuwen,et al.  The Membership Question for ET0L-Languages is Polynomially Complete , 1975, Inf. Process. Lett..

[12]  Sheila A. Greibach,et al.  Checking Automata and One-Way Stack Languages , 1969, J. Comput. Syst. Sci..

[13]  Seymour Ginsburg,et al.  Deterministic Context Free Languages , 1966, Inf. Control..

[14]  Arto Salomaa,et al.  Periodically Time-Variant Context-Free Grammars , 1970, Inf. Control..

[15]  Oscar H. Ibarra,et al.  On Two-way Multihead Automata , 1973, J. Comput. Syst. Sci..

[16]  Daniel J. Rosenkrantz,et al.  Programmed Grammars and Classes of Formal Languages , 1969, JACM.

[17]  Armin B. Cremers,et al.  On Vector Languages , 1974, J. Comput. Syst. Sci..

[18]  S. ABRAHAM,et al.  SOME QUESTIONS OF PHRASE STRUCTURE GRAMMARS, I , 1967 .

[19]  Ivan Hal Sudborough,et al.  On the Tape Complexity of Deterministic Context-Free Languages , 1978, JACM.

[20]  S. Ginsburg,et al.  Finite-Turn Pushdown Automata , 1966 .

[21]  Juris Hartmanis,et al.  An Overview of the Theory of Computational Complexity , 1971, JACM.

[22]  Sheila A. Greibach,et al.  The Hardest Context-Free Language , 1973, SIAM J. Comput..

[23]  Takumi Kasai,et al.  An Hierarchy Between Context-Free and Context-Sensitive Languages , 1970, J. Comput. Syst. Sci..

[24]  Leslie G. Valiant,et al.  General Context-Free Recognition in Less than Cubic Time , 1975, J. Comput. Syst. Sci..

[25]  Catriel Beeri,et al.  Checking Stacks and Context-Free Programmed Grammars Accept p-complete Languages , 1974 .

[26]  Jan van Leeuwen,et al.  The Tape-Complexity of Context-Independent Developmental Languages , 1975, J. Comput. Syst. Sci..

[27]  Arto Salomaa,et al.  Matrix Grammars with a Leftmost Restriction , 1972, Inf. Control..

[28]  Oscar H. Ibarra,et al.  Multi-Tape and Multi-Head Pushdown Automata , 1968, Inf. Control..

[29]  Nabil A. Khabbaz A Geometric Hierarchy of Languages , 1974, J. Comput. Syst. Sci..

[30]  Seymour Ginsburg,et al.  AFL with the Semilinear Property , 1971, J. Comput. Syst. Sci..

[31]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..