Representing the function and sensitivity of coastal interfaces in Earth system models

[1]  Benjamin H. Strauss,et al.  New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding , 2019, Nature Communications.

[2]  S. Feakins,et al.  Sustained wood burial in the Bengal Fan over the last 19 My , 2019, Proceedings of the National Academy of Sciences.

[3]  V. Bailey,et al.  Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities , 2019, Biogeosciences.

[4]  M. Kirwan,et al.  Nitrogen status regulates morphological adaptation of marsh plants to elevated CO2 , 2019, Nature Climate Change.

[5]  Wei Gong,et al.  Parameter Sensitivity Analysis for Computationally Intensive Spatially Distributed Dynamical Environmental Systems Models , 2019, Journal of Advances in Modeling Earth Systems.

[6]  C. Hopkinson,et al.  Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems , 2019, Nature Geoscience.

[7]  F. Cao,et al.  A mechanistic model of photochemical transformation and degradation of colored dissolved organic matter , 2019, Marine Chemistry.

[8]  H. Paerl,et al.  Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift , 2019, Scientific reports.

[9]  R. Vargas,et al.  Greenness trends and carbon stocks of mangroves across Mexico , 2019, Environmental Research Letters.

[10]  Marc Simard,et al.  Improving the Transferability of Suspended Solid Estimation in Wetland and Deltaic Waters with an Empirical Hyperspectral Approach , 2019, Remote. Sens..

[11]  Philip W. Jones,et al.  The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution , 2019, Journal of Advances in Modeling Earth Systems.

[12]  R. Vargas,et al.  Experimental influence of storm-surge salinity on soil greenhouse gas emissions from a tidal salt marsh. , 2019, The Science of the total environment.

[13]  M. Kirwan,et al.  Sea-level driven land conversion and the formation of ghost forests , 2019, Nature Climate Change.

[14]  K. Balaguru,et al.  Salish Sea Response to Global Climate Change, Sea Level Rise, and Future Nutrient Loads , 2019, Journal of Geophysical Research: Oceans.

[15]  V. Bailey,et al.  Spatial gradients in soil-carbon character of a coastal forested floodplain are associated with abiotic features, but not microbial communities , 2019 .

[16]  N. Ganju,et al.  Role of Tidal Wetland Stability in Lateral Fluxes of Particulate Organic Matter and Carbon , 2019, Journal of Geophysical Research: Biogeosciences.

[17]  Andrew Fox,et al.  Enhancing global change experiments through integration of remote‐sensing techniques , 2019, Frontiers in Ecology and the Environment.

[18]  T. Troxler,et al.  Saltwater intrusion and soil carbon loss: Testing effects of salinity and phosphorus loading on microbial functions in experimental freshwater wetlands , 2019, Geoderma.

[19]  O. Ulloa,et al.  Redox traits characterize the organization of global microbial communities , 2019, Proceedings of the National Academy of Sciences.

[20]  D. Lagomasino,et al.  Measuring mangrove carbon loss and gain in deltas , 2019, Environmental Research Letters.

[21]  Marc Simard,et al.  Mangrove canopy height globally related to precipitation, temperature and cyclone frequency , 2018, Nature Geoscience.

[22]  A. Rivas-Ubach,et al.  Marine microbial community responses related to wetland carbon mobilization in the coastal zone , 2018, Limnology and Oceanography Letters.

[23]  V. Cullinan,et al.  High‐frequency greenhouse gas flux measurement system detects winter storm surge effects on salt marsh , 2018, Global change biology.

[24]  I. Feller,et al.  Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland , 2018, Journal of Ecology.

[25]  C. Hopkinson,et al.  Lateral Marsh Edge Erosion as a Source of Sediments for Vertical Marsh Accretion , 2018, Journal of Geophysical Research: Biogeosciences.

[26]  Eurico J. D'Sa,et al.  Seasonal Trends in Surface pCO2 and Air‐Sea CO2 Fluxes in Apalachicola Bay, Florida, From VIIRS Ocean Color , 2018, Journal of Geophysical Research: Biogeosciences.

[27]  D. Woodruff,et al.  Storm-driven particulate organic matter flux connects a tidal tributary floodplain wetland, mainstem river, and estuary. , 2018, Ecological applications : a publication of the Ecological Society of America.

[28]  Praveen Kumar,et al.  Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling , 2018 .

[29]  H. Paerl,et al.  Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world , 2018, Biogeochemistry.

[30]  M. Capooci,et al.  Effects of Extreme Events on Arsenic Cycling in Salt Marshes , 2018 .

[31]  Robert F. Chen,et al.  Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America , 2018 .

[32]  Michael Bahn,et al.  Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements , 2018 .

[33]  Fang Cao,et al.  Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins , 2018 .

[34]  S. Ensign,et al.  Tidal extension and sea‐level rise: recommendations for a research agenda , 2018 .

[35]  B. Glavovic,et al.  Healing Brazil's Blue Amazon: The Role of Knowledge Networks in Nurturing Cross-Scale Transformations at the Frontlines of Ocean Sustainability , 2018, Front. Mar. Sci..

[36]  Stuart E. Hamilton,et al.  Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012 , 2016, Nature Climate Change.

[37]  D. Burdige,et al.  Centers of organic carbon burial and oxidation at the land-ocean interface , 2018 .

[38]  Usgcrp Second State of the Carbon Cycle Report , 2018 .

[39]  Julia A. Jones,et al.  Steering synergies in terrestrial observation networks : opportunity for advancing Earth system dynamics modelling , 2018 .

[40]  Chonggang Xu,et al.  Predicting Chronic Climate-Driven Disturbances and Their Mitigation. , 2018, Trends in ecology & evolution.

[41]  W. Long,et al.  Wind-Driven Dissolved Organic Matter Dynamics in a Chesapeake Bay Tidal Marsh-Estuary System , 2018, Estuaries and Coasts.

[42]  Robert Costanza,et al.  Twenty years of ecosystem services: How far have we come and how far do we still need to go? , 2017 .

[43]  Xuesong Zhang,et al.  A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models , 2017 .

[44]  M. Billen Insights Into the Causes of Arc Rifting From 2‐D Dynamic Models of Subduction , 2017 .

[45]  B. Bond‐Lamberty,et al.  Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought , 2017, Nature Communications.

[46]  P. Swarzenski,et al.  The Magnitude and Origin of Groundwater Discharge to Eastern U.S. and Gulf of Mexico Coastal Waters , 2017 .

[47]  James P. M. Syvitski,et al.  Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland , 2017 .

[48]  Benjamin Poulter,et al.  Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets , 2017 .

[49]  C. Sabine,et al.  Nonuniform ocean acidification and attenuation of the ocean carbon sink , 2017 .

[50]  Antonio B. Rodriguez,et al.  Placing barrier‐island transgression in a blue‐carbon context , 2017 .

[51]  Kevin Horsburgh,et al.  The impact of future sea-level rise on the global tides , 2017 .

[52]  M. van der Wegen,et al.  Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta , 2017 .

[53]  V. Bailey,et al.  Research Priorities to Incorporate Terrestrial-Aquatic Interfaces in Earth System Models. Workshop Report, September 7-9, 2016 , 2017 .

[54]  B. Satinsky,et al.  Bacterial Biogeography across the Amazon River-Ocean Continuum , 2017, Front. Microbiol..

[55]  Laurent Pfister,et al.  Ecohydrological interfaces as hot spots of ecosystem processes , 2017 .

[56]  William C. Gagne-Maynard,et al.  Carbon Dioxide Emissions along the Lower Amazon River , 2017, Front. Mar. Sci..

[57]  E. Rodriguez,et al.  The experimental flow to the Colorado River delta: Effects on carbon mobilization in a dry watercourse , 2017 .

[58]  W. M. Swingle,et al.  Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina , 2017 .

[59]  Thomas S. Bianchi,et al.  Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum , 2017 .

[60]  M. Kirwan,et al.  Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes , 2017, Nature Communications.

[61]  R. Franklin,et al.  Changes in abundance and community structure of nitrate-reducing bacteria along a salinity gradient in tidal wetlands , 2017 .

[62]  E. Bernhardt,et al.  Control Points in Ecosystems: Moving Beyond the Hot Spot Hot Moment Concept , 2017, Ecosystems.

[63]  F. Keutsch,et al.  Isoprene suppression of new particle formation: Potential mechanisms and implications , 2016 .

[64]  K. Pickering,et al.  Enhanced dry deposition of nitrogen pollution near coastlines: A case study covering the Chesapeake Bay estuary and Atlantic Ocean coastline , 2016 .

[65]  C. Schadt,et al.  Stability of peatland carbon to rising temperatures , 2016, Nature Communications.

[66]  John Y. Takekawa,et al.  Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes , 2016 .

[67]  Bart R. Johnson,et al.  Temperature response of soil respiration largely unaltered with experimental warming , 2016, Proceedings of the National Academy of Sciences.

[68]  C. Elphick,et al.  Forest resistance to sea-level rise prevents landward migration of tidal marsh , 2016 .

[69]  P. Thornton,et al.  Biogeochemical modeling of CO 2 and CH 4 production in anoxic Arcticsoil microcosms , 2016 .

[70]  Shimon Wdowinski,et al.  InSAR-Based Mapping of Tidal Inundation Extent and Amplitude in Louisiana Coastal Wetlands , 2016, Remote. Sens..

[71]  D. Jay,et al.  Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II. Water Level Models, Floodplain Wetland Inundation, and System Zones , 2016, Estuaries and Coasts.

[72]  D. Jay,et al.  Tidal river dynamics: Implications for deltas , 2016 .

[73]  Sergio Fagherazzi,et al.  Overestimation of marsh vulnerability to sea level rise , 2016 .

[74]  J. Bowen,et al.  Tidal Freshwater Marshes Harbor Phylogenetically Unique Clades of Sulfate Reducers That Are Resistant to Climate-Change-Induced Salinity Intrusion , 2016, Estuaries and Coasts.

[75]  A. Hardison,et al.  Sources, Ages, and Alteration of Organic Matter in Estuaries. , 2016, Annual review of marine science.

[76]  Robert E. Kopp,et al.  Allowances for evolving coastal flood risk under uncertain local sea-level rise , 2015, Climatic Change.

[77]  Cheryl L. Doughty,et al.  Mangrove Range Expansion Rapidly Increases Coastal Wetland Carbon Storage , 2016, Estuaries and Coasts.

[78]  Nicoletta Leonardi,et al.  A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes , 2015, Proceedings of the National Academy of Sciences.

[79]  Keqi Zhang,et al.  A Numerical Model for Storm Surges that Involve the Inundation of Complex Landscapes , 2015 .

[80]  J. Ridge,et al.  Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold , 2015 .

[81]  Ronald M. Thom,et al.  Detecting wetland changes in Shanghai, China using FORMOSAT and Landsat TM imagery , 2015 .

[82]  D. Lawrence,et al.  Improving the representation of hydrologic processes in Earth System Models , 2015 .

[83]  M. Allison,et al.  High rates of organic carbon burial in fjord sediments globally , 2015 .

[84]  Atul K. Jain,et al.  Using ecosystem experiments to improve vegetation models , 2015 .

[85]  S. Brody,et al.  The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast , 2015, PloS one.

[86]  R. Torres,et al.  Intertidal zone particulate organic carbon redistribution by low‐tide rainfall , 2015 .

[87]  Benoit Laignel,et al.  On the Investigation of the Sea-Level Variability in Coastal Zones Using SWOT Satellite Mission: Example of the Eastern English Channel (Western France) , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[88]  Vincent Vantrepotte,et al.  How optically diverse is the coastal ocean , 2015 .

[89]  Els Knaeps,et al.  A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters , 2015 .

[90]  A. Hughes Genotypic diversity and trait variance interact to affect marsh plant performance , 2014 .

[91]  R. Franklin,et al.  Salinity affects microbial activity and soil organic matter content in tidal wetlands , 2014, Global change biology.

[92]  Yushu Tang,et al.  Variability in soil microbial community and activity between coastal and riparian wetlands in the Yangtze River estuary – Potential impacts on carbon sequestration , 2014 .

[93]  P. Soranno,et al.  Cross‐scale interactions: quantifying multi‐scaled cause–effect relationships in macrosystems , 2014 .

[94]  W. Rockwell Geyer,et al.  The Estuarine Circulation , 2014 .

[95]  Kerrylee Rogers,et al.  Mangrove expansion and salt marsh decline at mangrove poleward limits , 2014, Global change biology.

[96]  P. Jones,et al.  Global warming and changes in drought , 2014 .

[97]  R. Franklin,et al.  Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon , 2013 .

[98]  Thomas S. Bianchi,et al.  The changing carbon cycle of the coastal ocean , 2013, Nature.

[99]  K. Milliken,et al.  Major advances in siliciclastic sedimentary geology, 1960–2012 , 2013 .

[100]  Patricia L. Wiberg,et al.  Marsh Collapse Does Not Require Sea Level Rise , 2013 .

[101]  W. Collins,et al.  The Community Earth System Model: A Framework for Collaborative Research , 2013 .

[102]  Keqi Zhang,et al.  Transition of the Coastal and Estuarine Storm Tide Model to an Operational Storm Surge Forecast Model: A Case Study of the Florida Coast , 2013 .

[103]  Damien T. Maher,et al.  Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek , 2013 .

[104]  J. Megonigal,et al.  Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise , 2013, Global change biology.

[105]  G. Voulgaris,et al.  Effects of Low Tide Rainfall on Intertidal Zone Material Cycling , 2013 .

[106]  J. Padisák,et al.  Disturbance and stress: different meanings in ecological dynamics? , 2013, Hydrobiologia.

[107]  D. Donato,et al.  Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems , 2012, PloS one.

[108]  Benjamin Poulter,et al.  Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP) , 2012 .

[109]  W. Geyer,et al.  Estuarine Exchange Flow Quantified with Isohaline Coordinates: Contrasting Long and Short Estuaries , 2012 .

[110]  E. Canuel,et al.  Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface , 2012 .

[111]  Wei-Jun Cai,et al.  Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude , 2012 .

[112]  R. Keil,et al.  Temporal variation in river nutrient and dissolved lignin phenol concentrations and the impact of storm events on nutrient loading to Hood Canal, Washington, USA , 2012, Biogeochemistry.

[113]  Johan van de Koppel,et al.  Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors , 2012, Reviews of Geophysics.

[114]  J. Morris,et al.  The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary , 2012, Biogeochemistry.

[115]  Haosheng Huang,et al.  Tidal dynamics in the Gulf of Maine and New England Shelf : an application of FVCOM , 2011 .

[116]  Changhui Peng,et al.  Methane emissions from the surface of the Three Gorges Reservoir , 2011 .

[117]  A. Mulligan,et al.  Tidal Boundary Conditions in SEAWAT , 2011, Ground water.

[118]  J. Magnuson,et al.  An integrated conceptual framework for long‐term social–ecological research , 2011 .

[119]  Hanna J. Poffenbarger,et al.  Salinity Influence on Methane Emissions from Tidal Marshes , 2011, Wetlands.

[120]  M. Kanninen,et al.  Mangroves among the most carbon-rich forests in the tropics , 2011 .

[121]  S. Silvestri,et al.  Remote sensing retrieval of suspended sediment concentration in shallow waters , 2011 .

[122]  Zhaoqing Yang,et al.  Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters , 2010 .

[123]  Skip J. Van Bloem,et al.  Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems , 2008 .

[124]  J. Megonigal,et al.  Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay , 2008 .

[125]  P. Sutton,et al.  The coasts of our world: Ecological, economic and social importance , 2007 .

[126]  Z. Cardon,et al.  Resource Exchange in the Rhizosphere: Molecular Tools and the Microbial Perspective , 2006 .

[127]  Mark D. Bertness,et al.  PHYSICAL AND BIOTIC DRIVERS OF PLANT DISTRIBUTION ACROSS ESTUARINE SALINITY GRADIENTS , 2004 .

[128]  Benjamin Smith,et al.  Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient , 2003 .

[129]  William H. McDowell,et al.  Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems , 2003, Ecosystems.

[130]  Changsheng Chen,et al.  An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries , 2003 .

[131]  C. Simmons,et al.  Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. , 2001, Journal of contaminant hydrology.

[132]  I. C. Prentice,et al.  Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process‐based ecosystem models , 2001 .

[133]  J. Downing,et al.  Biodiversity and stability in grasslands , 1996, Nature.

[134]  E. Novo,et al.  The Relationship Between Suspended Sediment Concentration and Remotely Sensed Spectral Radiance: A Review , 1988 .

[135]  Par E. Argence,et al.  Méthode de détermination des hauteurs vraies des couches de l'ionosphère, compte‐tenu de l'action du champ magnétique terrestre: I. Utilisation d'une expression approchée de l'indice de réfraction (cas du rayon ordinaire , 1953 .