Subdimensional expansion for multirobot path planning

Abstract Planning optimal paths for large numbers of robots is computationally expensive. In this paper, we introduce a new framework for multirobot path planning called subdimensional expansion, which initially plans for each robot individually, and then coordinates motion among the robots as needed. More specifically, subdimensional expansion initially creates a one-dimensional search space embedded in the joint configuration space of the multirobot system. When the search space is found to be blocked during planning by a robot–robot collision, the dimensionality of the search space is locally increased to ensure that an alternative path can be found. As a result, robots are only coordinated when necessary, which reduces the computational cost of finding a path. We present the M ⁎ algorithm, an implementation of subdimensional expansion that adapts the A ⁎ planner to perform efficient multirobot planning. M ⁎ is proven to be complete and to find minimal cost paths. Simulation results are presented that show that M ⁎ outperforms existing optimal multirobot path planning algorithms.

[1]  Adi Botea,et al.  MAPP: a Scalable Multi-Agent Path Planning Algorithm with Tractability and Completeness Guarantees , 2011, J. Artif. Intell. Res..

[2]  Vijay Kumar,et al.  Trajectory Planning and Assignment in Multirobot Systems , 2012, WAFR.

[3]  Jean-Claude Latombe,et al.  Using a PRM planner to compare centralized and decoupled planning for multi-robot systems , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Nathan R. Sturtevant,et al.  Partial-Expansion A* with Selective Node Generation , 2012, SOCS.

[5]  Jan Faigl,et al.  Asynchronous decentralized prioritized planning for coordination in multi-robot system , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Nathan R. Sturtevant,et al.  A Polynomial-Time Algorithm for Non-Optimal Multi-Agent Pathfinding , 2011, SOCS.

[7]  Pavel Surynek A SAT-Based Approach to Cooperative Path-Finding Using All-Different Constraints , 2012, SOCS.

[8]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[9]  Vijay Kumar,et al.  Concurrent assignment and planning of trajectories for large teams of interchangeable robots , 2013, 2013 IEEE International Conference on Robotics and Automation.

[10]  J. Gaschnig Performance measurement and analysis of certain search algorithms. , 1979 .

[11]  Howie Choset,et al.  ODrM* optimal multirobot path planning in low dimensional search spaces , 2013, 2013 IEEE International Conference on Robotics and Automation.

[12]  Nathan R. Sturtevant,et al.  Optimal-Generation Variants of EPEA , 2013, SOCS.

[13]  Jin Wang,et al.  The Advantages of Using Depth and Breadth Components in Heuristic Search , 1988, ISMIS.

[14]  Thierry Siméon,et al.  Multiple Path Coordination for Mobile Robots: A Geometric Algorithm , 1999, IJCAI.

[15]  Richard E. Korf,et al.  Linear-Space Best-First Search , 1993, Artif. Intell..

[16]  Alborz Geramifard,et al.  Biased Cost Pathfinding , 2006, AIIDE.

[17]  Enrico Pagello,et al.  On Parallel RRTs for Multi-robot Systems , 2002 .

[18]  Stephen J. Buckley,et al.  Fast motion planning for multiple moving robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[19]  Nathan R. Sturtevant,et al.  Enhanced Partial Expansion A , 2014, J. Artif. Intell. Res..

[20]  Kostas E. Bekris,et al.  Multi-Agent Pathfinding with Simultaneous Execution of Single-Agent Primitives , 2021, SOCS.

[21]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[22]  Roman Barták,et al.  Shortening Plans by Local Re-planning , 2012, 2012 IEEE 24th International Conference on Tools with Artificial Intelligence.

[23]  Howie Choset,et al.  Probabilistic path planning for multiple robots with subdimensional expansion , 2012, 2012 IEEE International Conference on Robotics and Automation.

[24]  Henry Kautz,et al.  Blackbox: Unifying sat-based and graph-based planning , 1999, International Joint Conference on Artificial Intelligence.

[25]  Nathan R. Sturtevant,et al.  Conflict-based search for optimal multi-agent pathfinding , 2012, Artif. Intell..

[26]  Paul G. Spirakis,et al.  Coordinating Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applications , 2015, FOCS.

[27]  Ira Pohl,et al.  The Avoidance of (Relative) Catastrophe, Heuristic Competence, Genuine Dynamic Weighting and Computational Issues in Heuristic Problem Solving , 1973, IJCAI.

[28]  Manfred K. Warmuth,et al.  Finding a Shortest Solution for the N × N Extension of the 15-PUZZLE Is Intractable , 1986, AAAI.

[29]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[30]  Nathan R. Sturtevant,et al.  Meta-Agent Conflict-Based Search For Optimal Multi-Agent Path Finding. , 2012 .

[31]  Nidhi Kalra,et al.  Replanning with RRTs , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[32]  Richard M. Wilson,et al.  Graph puzzles, homotopy, and the alternating group☆ , 1974 .

[33]  Howie Choset,et al.  M*: A complete multirobot path planning algorithm with performance bounds , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Jonathan P. How,et al.  Decentralized path planning for multi-agent teams with complex constraints , 2012, Autonomous Robots.

[35]  Pavel Surynek,et al.  SOLVING ABSTRACT COOPERATIVE PATH‐FINDING IN DENSELY POPULATED ENVIRONMENTS , 2014, Comput. Intell..

[36]  Paul Levi,et al.  Cooperative Multi-Robot Path Planning by Heuristic Priority Adjustment , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Bo Gao,et al.  Pareto-optimal coordination of multiple robots with safety guarantees , 2011, Autonomous Robots.

[38]  Wolfram Burgard,et al.  Constraint-Based Optimization of Priority Schemes for Decoupled Path Planning Techniques , 2001, KI/ÖGAI.

[39]  Peter Schüller,et al.  A General Formal Framework for Pathfinding Problems with Multiple Agents , 2013, AAAI.

[40]  John McPhee,et al.  COMPLETE AND SCALABLE MULTI-ROBOT PLANNING IN TUNNEL ENVIRONMENTS , 2006 .

[41]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[42]  Kostas E. Bekris,et al.  From Feasibility Tests to Path Planners for Multi-Agent Pathfinding , 2013, SOCS.

[43]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[44]  Cees Witteveen,et al.  Push and rotate: cooperative multi-agent path planning , 2013, AAMAS.

[45]  Dinesh Manocha,et al.  Centralized path planning for multiple robots: Optimal decoupling into sequential plans , 2009, Robotics: Science and Systems.

[47]  David Carmel,et al.  Incorporating Opponent Models into Adversary Search , 1996, AAAI/IAAI, Vol. 1.

[48]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[49]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[51]  Manfred K. Warmuth,et al.  NxN Puzzle and Related Relocation Problem , 1990, J. Symb. Comput..

[52]  Pavel Surynek Optimal Cooperative Path-Finding with Generalized Goals in Difficult Cases , 2013, SARA.

[53]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[54]  Malte Helmert,et al.  Non-Optimal Multi-Agent Pathfinding is Solved (Since 1984) , 2012, SOCS.

[55]  David Silver,et al.  Cooperative Pathfinding , 2005, AIIDE.

[56]  Michal Pechoucek,et al.  Multi-agent RRT: sampling-based cooperative pathfinding , 2013, AAMAS.

[57]  Kostas E. Bekris,et al.  Push and Swap: Fast Cooperative Path-Finding with Completeness Guarantees , 2011, IJCAI.

[58]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[59]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[60]  Roni Stern,et al.  The Increasing Cost Tree Search for Optimal Multi-Agent Pathfinding , 2011, IJCAI.

[61]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[62]  Yixin Chen,et al.  A Novel Transition Based Encoding Scheme for Planning as Satisfiability , 2010, AAAI.

[63]  Mitul Saha,et al.  Multi-Robot Motion Planning by Incremental Coordination , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[64]  Trevor Scott Standley Finding Optimal Solutions to Cooperative Pathfinding Problems , 2010, AAAI.

[65]  Roni Stern,et al.  Suboptimal Variants of the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem , 2014, SOCS.