Gradient-domain path tracing

We introduce gradient-domain rendering for Monte Carlo image synthesis. While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte Carlo algorithms, and furthermore, that even without changing the sample distribution, this often leads to significant error reduction. This broadens the applicability of gradient rendering considerably. To gain insight into the conditions under which gradient-domain sampling is beneficial, we present a frequency analysis that compares Monte Carlo sampling of gradients followed by Poisson reconstruction to traditional Monte Carlo sampling. Finally, we describe Gradient-Domain Path Tracing (G-PT), a relatively simple modification of the standard path tracing algorithm that can yield far superior results.

[1]  Jaakko Lehtinen,et al.  Improved sampling for gradient-domain metropolis light transport , 2014, ACM Trans. Graph..

[2]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[3]  Sumanta N. Pattanaik,et al.  Radiance caching for efficient global illumination computation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  Yung-Yu Chuang,et al.  SURE-based optimization for adaptive sampling and reconstruction , 2012, ACM Trans. Graph..

[5]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[6]  Cyril Soler,et al.  A Local Frequency Analysis of Light Scattering and Absorption , 2014, ACM Trans. Graph..

[7]  Homan Igehy,et al.  Tracing ray differentials , 1999, SIGGRAPH.

[8]  Soheil Darabi,et al.  On filtering the noise from the random parameters in Monte Carlo rendering , 2012, TOGS.

[9]  Oscar A. Z. Leneman,et al.  Random Sampling of Random Processes: Impulse Processes , 1966, Inf. Control..

[10]  Paul S. Heckbert,et al.  Irradiance gradients , 2008, SIGGRAPH '08.

[11]  Henrik Wann Jensen,et al.  Practical Hessian-based error control for irradiance caching , 2012, ACM Trans. Graph..

[12]  Gary W. Meyer,et al.  A frequency based ray tracer , 1995, SIGGRAPH.

[13]  Michael F. Cohen,et al.  Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems , 2008, ECCV.

[14]  Matthias Zwicker,et al.  Adaptive sampling and reconstruction using greedy error minimization , 2011, ACM Trans. Graph..

[15]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[16]  Jaakko Lehtinen,et al.  Gradient-domain metropolis light transport , 2013, ACM Trans. Graph..

[17]  Frédo Durand,et al.  A Frequency Analysis of Monte-Carlo and other Numerical Integration Schemes , 2011 .

[18]  Michael F. Cohen,et al.  GradientShop: A gradient-domain optimization framework for image and video filtering , 2010, TOGS.

[19]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[20]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[21]  Anton Kaplanyan,et al.  The natural-constraint representation of the path space for efficient light transport simulation , 2014, ACM Trans. Graph..

[22]  Todor Georgiev,et al.  Image Reconstruction Invariant to Relighting , 2005, Eurographics.

[23]  Jos Stam,et al.  An Illumination Model for a Skin Layer Bounded by Rough Surfaces , 2001, Rendering Techniques.

[24]  Steve Marschner,et al.  Manifold exploration , 2012, ACM Trans. Graph..

[25]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[26]  F. Durand,et al.  A frequency analysis of light transport , 2005, ACM Trans. Graph..

[27]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[28]  R. Ramamoorthi,et al.  Adaptive wavelet rendering , 2009, SIGGRAPH 2009.

[29]  D. Ruderman The statistics of natural images , 1994 .

[30]  Leif Kobbelt,et al.  Theory, analysis and applications of 2D global illumination , 2012, TOGS.

[31]  Matthias Zwicker,et al.  Robust Denoising using Feature and Color Information , 2013, Comput. Graph. Forum.

[32]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[33]  Matthias Zwicker,et al.  Radiance caching for participating media , 2008, TOGS.

[34]  Ramesh Raskar,et al.  Why I Want a Gradient Camera , 2022 .

[35]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[36]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[37]  Frédo Durand,et al.  5D Covariance tracing for efficient defocus and motion blur , 2013, TOGS.

[38]  Ravi Ramamoorthi,et al.  A first-order analysis of lighting, shading, and shadows , 2007, TOGS.

[39]  Kadi Bouatouch,et al.  Radiance caching for efficient global illumination computation , 2005 .

[40]  Matthias Zwicker,et al.  Irradiance Gradients in the Presence of Participating Media and Occlusions , 2008, Comput. Graph. Forum.