Bioinformatics applied to biotechnology: A review towards bioenergy research

Abstract The ever-increasing demand for energy, along with worldwide policies aiming sustainability, resulted in an escalation of research projects focusing on alternative routes for energy production. Among the available options, microorganism fermentation using lignocellulosic biomass as a carbon source to generate bioproducts is considered a promising technology for industrial applications, with potential to replace several sources of non-renewable origin that are widely used today. In this context, various new industrial processes have been developed, such as the second-generation ethanol technology, which allows bioethanol production from lignocellulosic biomass by genetically modified microorganisms. In recent years, fields in biotechnology were mainly driven by advances in molecular biology and genetic engineering tools, which culminated in the ‘omics’ revolution. Recent developments in DNA sequencing and liquid/mass spectrometry technologies, supported by research in bioinformatics and high-performance computing, allowed the identification of new organisms and metabolic processes, expanding the human knowledge about biological systems. The result of this newly gained understanding is the ability to perform genetic modifications focusing on the obtention of interesting phenotypes with increased productivity and resistance or the synthesis of new compounds that were previously produced using non-renewable routes. In this context, this review presents the bioinformatics workflows and applications of ‘omics’ approaches in biotechnological research, focusing on genomics, metagenomics, phylogenomics, transcriptomics, proteomics, metabolomics and their integration to enable a holistic overview of biological systems.

[1]  E. deAzevedo,et al.  Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production – part 1 , 2013, Biotechnology for Biofuels.

[2]  Justin Chu,et al.  ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter , 2016, bioRxiv.

[3]  K. Kim,et al.  Deletion of PHO13, Encoding Haloacid Dehalogenase Type IIA Phosphatase, Results in Upregulation of the Pentose Phosphate Pathway in Saccharomyces cerevisiae , 2014, Applied and Environmental Microbiology.

[4]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[5]  M. Muthamilarasan,et al.  Development of 5123 Intron-Length Polymorphic Markers for Large-Scale Genotyping Applications in Foxtail Millet , 2013, DNA research : an international journal for rapid publication of reports on genes and genomes.

[6]  J. Berrin,et al.  Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. , 2012, Bioresource technology.

[7]  Suzanne M. Paley,et al.  Beyond the genome (BTG) is a (PGDB) pathway genome database: HumanCyc , 2010, Genome Biology.

[8]  Hongyu Zhao,et al.  Proteomics and the Analysis of Proteomic Data: An Overview of Current Protein‐Profiling Technologies , 2005, Current protocols in bioinformatics.

[9]  M. Gerstein,et al.  PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data , 2009, Genome Biology.

[10]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[11]  M. Carazzolle,et al.  Lignocellulolytic characterization and comparative secretome analysis of a Trichoderma erinaceum strain isolated from decaying sugarcane straw. , 2019, Fungal biology.

[12]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[13]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[14]  Xiaoxu Tian,et al.  Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803 , 2013, Biotechnology for Biofuels.

[15]  Jordan Peccia,et al.  Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation , 2012, Biotechnology for Biofuels.

[16]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[17]  Martin Norin,et al.  Structural proteomics: developments in structure-to-function predictions. , 2002, Trends in biotechnology.

[18]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[19]  J. Thelen,et al.  The proteomic future: where mass spectrometry should be taking us. , 2012, The Biochemical journal.

[20]  K. Kuroda,et al.  Comparative genomics of the mesophilic cellulosome‐producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing , 2010, Environmental technology.

[21]  Matej Oresic,et al.  MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data , 2006, Bioinform..

[22]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[23]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[24]  León F. Toro,et al.  Flux Balance Analysis and Strain Optimization for Ethanol Production in Saccharomyces cerevisiae , 2014 .

[25]  H. Jun,et al.  Insights into enzyme secretion by filamentous fungi: comparative proteome analysis of Trichoderma reesei grown on different carbon sources. , 2013, Journal of proteomics.

[26]  P. Lea,et al.  Resolving the Role of Plant NAD-Glutamate Dehydrogenase: III. Overexpressing Individually or Simultaneously the Two Enzyme Subunits Under Salt Stress Induces Changes in the Leaf Metabolic Profile and Increases Plant Biomass Production. , 2015, Plant & cell physiology.

[27]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[28]  Gregory Butler,et al.  SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models , 2014, BMC Bioinformatics.

[29]  Noah A Rosenberg,et al.  Gene tree discordance, phylogenetic inference and the multispecies coalescent. , 2009, Trends in ecology & evolution.

[30]  Trey Ideker,et al.  Systems biology guided by XCMS Online metabolomics , 2017, Nature Methods.

[31]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[32]  W. V. van Zyl,et al.  Quantitative metabolomics of a xylose-utilizing Saccharomyces cerevisiae strain expressing the Bacteroides thetaiotaomicron xylose isomerase on glucose and xylose , 2017, Journal of Industrial Microbiology & Biotechnology.

[33]  Anna Lipzen,et al.  Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production , 2014, Genome biology and evolution.

[34]  V. Martin,et al.  Global View of the Clostridium thermocellum Cellulosome Revealed by Quantitative Proteomic Analysis , 2007, Journal of bacteriology.

[35]  J. Yates,et al.  Protein analysis by shotgun/bottom-up proteomics. , 2013, Chemical reviews.

[36]  Y. Zhang,et al.  Plastic responses in the metabolome and functional traits of maize plants to temperature variations. , 2016, Plant biology.

[37]  Tom O. Delmont,et al.  Anvi’o: an advanced analysis and visualization platform for ‘omics data , 2015, PeerJ.

[38]  Mark J. P. Chaisson,et al.  Short read fragment assembly of bacterial genomes. , 2008, Genome research.

[39]  R. Casu,et al.  Transcriptome Analysis and Functional Genomics of Sugarcane , 2011, Tropical Plant Biology.

[40]  Kiyoshi Asai,et al.  Training alignment parameters for arbitrary sequencers with LAST-TRAIN , 2016, Bioinform..

[41]  R. Sekhon,et al.  Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes , 2011 .

[42]  I-Min A. Chen,et al.  IMG/M: integrated genome and metagenome comparative data analysis system , 2016, Nucleic Acids Res..

[43]  Amit Kumar Yadav,et al.  MassWiz: a novel scoring algorithm with target-decoy based analysis pipeline for tandem mass spectrometry. , 2011, Journal of proteome research.

[44]  M. Morgante,et al.  An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis , 2013, PloS one.

[45]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[46]  Kazuki Saito,et al.  Recent advances of metabolomics in plant biotechnology , 2011, Plant Biotechnology Reports.

[47]  William Stafford Noble,et al.  Technical advances in proteomics: new developments in data-independent acquisition , 2016, F1000Research.

[48]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[49]  I. Tagkopoulos,et al.  Data integration and predictive modeling methods for multi-omics datasets. , 2018, Molecular omics.

[50]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[51]  Philip D. Blood,et al.  Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software , 2017, Nature Methods.

[52]  R. Graham,et al.  Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630. , 2011, Journal of proteome research.

[53]  Andreas Schmidt,et al.  Bioinformatic analysis of proteomics data , 2014, BMC Systems Biology.

[54]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[55]  Daniel J. Gaffney,et al.  A survey of best practices for RNA-seq data analysis , 2016, Genome Biology.

[56]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[57]  F. Squina,et al.  Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass , 2016, Biotechnology for Biofuels.

[58]  Miriam L. Land,et al.  Evaluation and validation of de novo and hybrid assembly techniques to derive high-quality genome sequences , 2014, Bioinform..

[59]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[60]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[61]  B. Sagredo,et al.  Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS) , 2015, PloS one.

[62]  Catherine A. Cooper,et al.  GlycoMod – A software tool for determining glycosylation compositions from mass spectrometric data , 2001, Proteomics.

[63]  Natalia N. Ivanova,et al.  GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes , 2010, Nature Methods.

[64]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[65]  Lazaros Mavridis,et al.  PCDDB: new developments at the Protein Circular Dichroism Data Bank , 2016, Nucleic Acids Res..

[66]  L. Trindade,et al.  Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels , 2017, BMC Genomics.

[67]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[68]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[69]  David R. Kelley,et al.  Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering , 2011, Nucleic acids research.

[70]  P. B. Pope,et al.  Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data , 2015, Scientific Reports.

[71]  Brian C. Thomas,et al.  EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data , 2011, Genome Biology.

[72]  R. Dewhurst,et al.  Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen , 2018, Nature Communications.

[73]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[74]  David S. Wishart,et al.  YMDB 2.0: a significantly expanded version of the yeast metabolome database , 2016, Nucleic Acids Res..

[75]  Hélène Touzet,et al.  SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data , 2012, Bioinform..

[76]  R. Vicentini,et al.  Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content , 2015, PloS one.

[77]  C. Broeckling,et al.  Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis , 2016, Front. Plant Sci..

[78]  L. Veenhoff,et al.  Proteomics of Saccharomyces cerevisiae Organelles* , 2009, Molecular & Cellular Proteomics.

[79]  James K. Hane,et al.  CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts , 2015, BMC Genomics.

[80]  Stinus Lindgreen,et al.  AdapterRemoval v2: rapid adapter trimming, identification, and read merging , 2016, BMC Research Notes.

[81]  M. Muthamilarasan,et al.  Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses , 2014, Theoretical and Applied Genetics.

[82]  Antonis Rokas,et al.  Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data , 2016, G3: Genes, Genomes, Genetics.

[83]  Draft Genome Sequences of Two Unclassified Bacteria, Sphingomonas sp. Strains IBVSS1 and IBVSS2, Isolated from Environmental Samples , 2017, Genome Announcements.

[84]  T. Hubbard,et al.  Comparison of Mascot and X!Tandem Performance for Low and High Accuracy Mass Spectrometry and the Development of an Adjusted Mascot Threshold*S , 2008, Molecular & Cellular Proteomics.

[85]  P. Arruda,et al.  The libraries that made SUCEST , 2001 .

[86]  S. Sze,et al.  Quantitative Secretomic Analysis of Trichoderma reesei Strains Reveals Enzymatic Composition for Lignocellulosic Biomass Degradation* , 2012, Molecular & Cellular Proteomics.

[87]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[88]  Proteomic Analysis of Osmotic Stress-Responsive Proteins in Sugarcane Leaves , 2012, Plant Molecular Biology Reporter.

[89]  Martin Vingron,et al.  Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..

[90]  Nan Li,et al.  Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. , 2012, Briefings in functional genomics.

[91]  Miguel Rocha,et al.  Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration. , 2014, Food chemistry.

[92]  Glenn Tesler,et al.  Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory , 2012, BMC Bioinformatics.

[93]  R. Sun,et al.  Characterization of lignins isolated with alkali from the hydrothermal or dilute-acid pretreated rapeseed straw during bioethanol production. , 2018, International journal of biological macromolecules.

[94]  Yasset Perez-Riverol,et al.  Making proteomics data accessible and reusable: Current state of proteomics databases and repositories , 2015, Proteomics.

[95]  Edward M. Rubin,et al.  Genomics of cellulosic biofuels , 2008, Nature.

[96]  Daniel Spies,et al.  Comparative analysis of differential gene expression tools for RNA sequencing time course data , 2017, Briefings Bioinform..

[97]  M. J. Terry,et al.  Improving photosynthesis for algal biofuels: toward a green revolution. , 2011, Trends in biotechnology.

[98]  Phuongan Dam,et al.  Identification of novel proteins involved in plant cell-wall synthesis based on protein-protein interaction data. , 2010, Journal of proteome research.

[99]  Michael C. Schatz,et al.  16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model , 2017, bioRxiv.

[100]  Derek Y. Chiang,et al.  High-resolution mapping of copy-number alterations with massively parallel sequencing , 2009, Nature Methods.

[101]  Matteo Pellegrini,et al.  RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas Cells Reveals Aspects of Acclimation Critical for Cell Survival[W] , 2010, Plant Cell.

[102]  Antje Chang,et al.  BRENDA , the enzyme database : updates and major new developments , 2003 .

[103]  Shangtian Yang,et al.  Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. , 2015, Journal of biotechnology.

[104]  Shanrong Zhao,et al.  Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be? , 2015, PloS one.

[105]  Alexei J. Drummond,et al.  Bayesian Phylogeography Finds Its Roots , 2009, PLoS Comput. Biol..

[106]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[107]  David S. Wishart,et al.  ECMDB 2.0: A richer resource for understanding the biochemistry of E. coli , 2015, Nucleic Acids Res..

[108]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[109]  Katalin F Medzihradszky,et al.  Characterization of site-specific N-glycosylation. , 2008, Methods in molecular biology.

[110]  P. Kumar,et al.  Metabolomics in agriculture. , 2012, Omics : a journal of integrative biology.

[111]  Martin Vingron,et al.  IntAct: an open source molecular interaction database , 2004, Nucleic Acids Res..

[112]  Yufeng J. Tseng,et al.  3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data , 2013, BMC Systems Biology.

[113]  Minghui Ao,et al.  Reanalysis of Global Proteomic and Phosphoproteomic Data Identified a Large Number of Glycopeptides. , 2018, Analytical chemistry.

[114]  Steven E Brenner,et al.  The Impact of Structural Genomics: Expectations and Outcomes , 2005, Science.

[115]  John P. Wikswo,et al.  Phenotypic Mapping of Metabolic Profiles Using Self-Organizing Maps of High-Dimensional Mass Spectrometry Data , 2014, Analytical chemistry.

[116]  A. Gruber,et al.  GenSeed-HMM: A Tool for Progressive Assembly Using Profile HMMs as Seeds and its Application in Alpavirinae Viral Discovery from Metagenomic Data , 2016, Front. Microbiol..

[117]  Lior Pachter,et al.  VISTA: computational tools for comparative genomics , 2004, Nucleic Acids Res..

[118]  H. Zou,et al.  Proteomic analysis of protein methylation in the yeast Saccharomyces cerevisiae. , 2015, Journal of proteomics.

[119]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[120]  S. Neumann,et al.  CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. , 2012, Analytical chemistry.

[121]  K. Parker,et al.  Depth of Proteome Issues , 2004, Molecular & Cellular Proteomics.

[122]  Xueyang Feng,et al.  Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae , 2016, Biotechnology for Biofuels.

[123]  Hai Zhao,et al.  High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata) , 2017, BMC Genomics.

[124]  M. Vincentz,et al.  Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane , 2010, BMC Plant Biology.

[125]  P. Rouzé,et al.  Current methods of gene prediction, their strengths and weaknesses. , 2002, Nucleic acids research.

[126]  Susanne Dreisigacker,et al.  Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments , 2015, Theoretical and Applied Genetics.

[127]  Alex Sánchez-Pla,et al.  Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data , 2018, BMC Bioinformatics.

[128]  P. Gonçalves,et al.  Draft Genome Sequence of Sporidiobolus salmonicolor CBS 6832, a Red-Pigmented Basidiomycetous Yeast , 2015, Genome Announcements.

[129]  P. May,et al.  Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. , 2010, Molecular bioSystems.

[130]  Paul J. McMurdie,et al.  Exact sequence variants should replace operational taxonomic units in marker-gene data analysis , 2017, The ISME Journal.

[131]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[132]  Yoav Arava,et al.  Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. , 2008, RNA.

[133]  N. Graham,et al.  Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation , 2008, Yeast.

[134]  Timothy M. D. Ebbels,et al.  Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA , 2011 .

[135]  Kim-Anh Lê Cao,et al.  mixOmics: An R package for ‘omics feature selection and multiple data integration , 2017, bioRxiv.

[136]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[137]  Ayca Cankorur-Cetinkaya,et al.  Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations , 2016, Front. Bioeng. Biotechnol..

[138]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[139]  Justin Powlowski,et al.  Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris , 2011, Nature Biotechnology.

[140]  Stefan R. Schulze,et al.  An EST survey of the sugarcane transcriptome , 2004, Theoretical and Applied Genetics.

[141]  Paul J. Kennedy,et al.  Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques , 2012, PloS one.

[142]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[143]  M. Mielczarek,et al.  Review of alignment and SNP calling algorithms for next-generation sequencing data , 2015, Journal of Applied Genetics.

[144]  Huimin Zhao,et al.  Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis , 2013, Biotechnology for Biofuels.

[145]  Martin Kollmar,et al.  A novel hybrid gene prediction method employing protein multiple sequence alignments , 2011, Bioinform..

[146]  John R Yates,et al.  Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0 , 2015, Nature Protocols.

[147]  Yazhu Chen,et al.  A Brief Review of Computational Gene Prediction Methods , 2004, Genomics, proteomics & bioinformatics.

[148]  Anders Krogh,et al.  Fast and sensitive taxonomic classification for metagenomics with Kaiju , 2016, Nature Communications.

[149]  Sakari Joenväärä,et al.  N-glycoproteomics - an automated workflow approach. , 2008, Glycobiology.

[150]  José Crossa,et al.  Genetic Gains in Grain Yield Through Genomic Selection in Eight Bi-parental Maize Populations under Drought Stress , 2015 .

[151]  Albert J R Heck,et al.  Proteome analysis of yeast response to various nutrient limitations , 2006, Molecular systems biology.

[152]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[153]  Wataru Hashimoto,et al.  Bioethanol production from marine biomass alginate by metabolically engineered bacteria , 2011 .

[154]  M. Schatz,et al.  Hybrid error correction and de novo assembly of single-molecule sequencing reads , 2012, Nature Biotechnology.

[155]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[156]  W. Qin,et al.  Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi , 2017, Mycology.

[157]  David S. Wishart,et al.  HMDB 4.0: the human metabolome database for 2018 , 2017, Nucleic Acids Res..

[158]  R. Wilson,et al.  BreakDancer: An algorithm for high resolution mapping of genomic structural variation , 2009, Nature Methods.

[159]  B. Chain,et al.  The sequence of sequencers: The history of sequencing DNA , 2016, Genomics.

[160]  C. Nusbaum,et al.  ALLPATHS: de novo assembly of whole-genome shotgun microreads. , 2008, Genome research.

[161]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[162]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[163]  Kwanjeera Wanichthanarak,et al.  Metabox: A Toolbox for Metabolomic Data Analysis, Interpretation and Integrative Exploration , 2017, PloS one.

[164]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[165]  L. A. Calderón,et al.  Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production , 2015, Microbial Cell Factories.

[166]  A. Glieder,et al.  Engineering primary metabolic pathways of industrial micro-organisms. , 2007, Journal of biotechnology.

[167]  R. González-Fernández,et al.  Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. , 2014, Journal of proteomics.

[168]  David L. Erickson,et al.  DNA barcodes for ecology, evolution, and conservation. , 2015, Trends in ecology & evolution.

[169]  Ruedi Aebersold,et al.  Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics. , 2011, Methods.

[170]  Clícia Grativol,et al.  High-Throughput Sequencing of Small RNA Transcriptome Reveals Salt Stress Regulated MicroRNAs in Sugarcane , 2013, PloS one.

[171]  D. Rossouw,et al.  Comparative Transcriptomic and Proteomic Profiling of Industrial Wine Yeast Strains , 2010, Applied and Environmental Microbiology.

[172]  M. Carazzolle,et al.  IIS – Integrated Interactome System: A Web-Based Platform for the Annotation, Analysis and Visualization of Protein-Metabolite-Gene-Drug Interactions by Integrating a Variety of Data Sources and Tools , 2014, PloS one.

[173]  S. Lonardi,et al.  CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers , 2015, BMC Genomics.

[174]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[175]  Henk W. P. van den Toorn,et al.  Toward an Optimized Workflow for Middle-Down Proteomics , 2017, Analytical chemistry.

[176]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[177]  Fatih Ozsolak,et al.  RNA sequencing: advances, challenges and opportunities , 2011, Nature Reviews Genetics.

[178]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[179]  S. Avery,et al.  Transcript‐specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae , 2008, FEBS letters.

[180]  Nikolay Vyahhi,et al.  Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool for Closely Related Microbial Genomes , 2013, WABI.

[181]  Amit Roy,et al.  Molecular Markers in Phylogenetic Studies-A Review , 2014 .

[182]  Peng Gao,et al.  Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom , 2009, BMC Bioinformatics.

[183]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[184]  Sonia Tarazona,et al.  PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data , 2018, bioRxiv.

[185]  Jonathan Kennedy,et al.  Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments , 2008, Microbial cell factories.

[186]  Oliver Fiehn,et al.  Applications of metabolomics in agriculture. , 2006, Journal of agricultural and food chemistry.

[187]  Ramesh Sundar Amalraj,et al.  Sugarcane proteomics: An update on current status, challenges, and future prospects , 2015, Proteomics.

[188]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[189]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[190]  Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance , 2017, Molecular Breeding.

[191]  T. Cataldi,et al.  Cell Wall Proteome of Sugarcane Young and Mature Leaves and Stems , 2018, Proteomics.

[192]  E. Kellogg,et al.  Five Nuclear Loci Resolve the Polyploid History of Switchgrass (Panicum virgatum L.) and Relatives , 2012, PloS one.

[193]  Michael C. Jewett,et al.  Growth Temperature Exerts Differential Physiological and Transcriptional Responses in Laboratory and Wine Strains of Saccharomyces cerevisiae , 2008, Applied and Environmental Microbiology.

[194]  Jin-Qun Huang,et al.  Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression , 2016, Biotechnology for Biofuels.

[195]  Yong‐Su Jin,et al.  Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. , 2015, Metabolic engineering.

[196]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[197]  William Stafford Noble,et al.  Faster SEQUEST searching for peptide identification from tandem mass spectra. , 2011, Journal of proteome research.

[198]  Christopher A. Miller,et al.  ReadDepth: A Parallel R Package for Detecting Copy Number Alterations from Short Sequencing Reads , 2011, PloS one.

[199]  Richard D. Smith,et al.  Advanced proteomic liquid chromatography. , 2012, Journal of chromatography. A.

[200]  Rosane Minghim,et al.  CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components , 2017, BMC Bioinformatics.

[201]  Hong Ming Chen,et al.  Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome , 2018, The ISME Journal.

[202]  Claude Thermes,et al.  The Third Revolution in Sequencing Technology. , 2018, Trends in genetics : TIG.

[203]  B. Searle Scaffold: A bioinformatic tool for validating MS/MS‐based proteomic studies , 2010, Proteomics.

[204]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[205]  Jason A. Papin,et al.  Integration of expression data in genome-scale metabolic network reconstructions , 2012, Front. Physio..

[206]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[207]  J. Messing,et al.  Screen of Genes Linked to High-Sugar Content in Stems by Comparative Genomics , 2008, Rice.

[208]  C. Robin Buell,et al.  Maize (Zea mays L.) Genome Diversity as Revealed by RNA-Sequencing , 2012, PloS one.

[209]  A. Conesa,et al.  Differential expression in RNA-seq: a matter of depth. , 2011, Genome research.

[210]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[211]  Scott V. Edwards,et al.  Phylogenomic subsampling: a brief review , 2016 .

[212]  N. Jangpromma,et al.  A Proteomics Analysis of Drought Stress-Responsive Proteins as Biomarker for Drought-Tolerant Sugarcane Cultivars , 2010 .

[213]  Y. Mechref,et al.  Bioinformatics Protocols in Glycomics and Glycoproteomics , 2014, Current protocols in protein science.

[214]  Wilfred Vermerris,et al.  Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. , 2011, Journal of integrative plant biology.

[215]  Jihua Wang,et al.  Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars , 2018, Scientific Reports.

[216]  Jonathan Pevsner,et al.  Bioinformatics and functional genomics , 2003 .

[217]  Jia Wang,et al.  Enhancement of Microbial Biodesulfurization via Genetic Engineering and Adaptive Evolution , 2017, PloS one.

[218]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[219]  M. Negro,et al.  Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. , 2017, International journal of biological macromolecules.

[220]  C. Ramos,et al.  The use of circular dichroism spectroscopy to study protein folding, form and function , 2009 .

[221]  Donovan H. Parks,et al.  Author Correction: Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life , 2017, Nature Microbiology.

[222]  A. A. Tribst,et al.  Effects of High Pressure Homogenization on the Activity, Stability, Kinetics and Three-Dimensional Conformation of a Glucose Oxidase Produced by Aspergillus niger , 2014, PloS one.

[223]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[224]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[225]  Intawat Nookaew,et al.  Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials , 2012, BMC Systems Biology.

[226]  I. Simon,et al.  Studying and modelling dynamic biological processes using time-series gene expression data , 2012, Nature Reviews Genetics.

[227]  Melissa Bastide,et al.  Assembling Genomic DNA Sequences with PHRAP , 2007, Current protocols in bioinformatics.

[228]  Qingguo Wang,et al.  Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives , 2013, BMC Bioinformatics.

[229]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[230]  B. Wallace,et al.  Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. , 2008, Biopolymers.

[231]  Tyson A. Clark,et al.  Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing , 2016, Nature Communications.

[232]  T. Joshi,et al.  Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis , 2015, BMC Genomics.

[233]  P. Zandi,et al.  Whole-genome CNV analysis: advances in computational approaches , 2015, Front. Genet..

[234]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[235]  Manoj Kumar,et al.  Microbial enzymes: industrial progress in 21st century , 2016, 3 Biotech.

[236]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[237]  Helena Nevalainen,et al.  Protein glycosylation pathways in filamentous fungi. , 2008, Glycobiology.

[238]  Arthur R. Grossman,et al.  Anaerobic Acclimation in Chlamydomonas reinhardtii , 2007, Journal of Biological Chemistry.

[239]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..

[240]  Association of variation in the sugarcane transcriptome with sugar content , 2017, BMC Genomics.

[241]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[242]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[243]  Y. van de Peer,et al.  i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets , 2011, Nucleic acids research.

[244]  M. Ferrer,et al.  Mining enzymes from extreme environments. , 2007, Current opinion in microbiology.

[245]  Haixu Tang,et al.  FragGeneScan: predicting genes in short and error-prone reads , 2010, Nucleic acids research.

[246]  G. Fincher Exploring the evolution of (1,3;1,4)-beta-D-glucans in plant cell walls: comparative genomics can help! , 2009, Current opinion in plant biology.

[247]  G. Jiménez-Sánchez,et al.  Omics and the bioeconomy , 2015, EMBO reports.

[248]  Miriah D. Meyer,et al.  Genome-wide synteny through highly sensitive sequence alignment: Satsuma , 2010, Bioinform..

[249]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[250]  J. Keasling,et al.  Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli , 2012, Microbial Cell Factories.

[251]  John L. Spouge,et al.  Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.

[252]  Denis C. Bauer,et al.  A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data , 2014, bioRxiv.

[253]  Yu Cao,et al.  RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L. , 2017, Front. Plant Sci..

[254]  Monica Chagoyen,et al.  MBROLE 2.0—functional enrichment of chemical compounds , 2016, Nucleic Acids Res..

[255]  N. Greenfield Using circular dichroism spectra to estimate protein secondary structure , 2007, Nature Protocols.

[256]  Luis Miguel Serrano-Bermúdez,et al.  Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: metabolic flux distribution of a strain cultured in glycerol , 2017, BMC Systems Biology.

[257]  J. Michalski,et al.  Analysis of protein glycosylation by mass spectrometry , 2007, Nature Protocols.

[258]  L. Fulton,et al.  Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting , 2003, Science.

[259]  Feng Li,et al.  Glycobioinformatics: Current strategies and tools for data mining in MS‐based glycoproteomics , 2013, Proteomics.

[260]  G. Sanguinetti,et al.  Gene Regulatory Network Inference: An Introductory Survey. , 2018, Methods in molecular biology.

[261]  Richard E. Lenski,et al.  Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures , 2017, Proceedings of the National Academy of Sciences.

[262]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[263]  Arnald Alonso,et al.  Analytical Methods in Untargeted Metabolomics: State of the Art in 2015 , 2015, Front. Bioeng. Biotechnol..

[264]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[265]  Haruki Nakamura,et al.  The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data , 2006, Nucleic Acids Res..

[266]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[267]  B. Simmons,et al.  A bacterial pioneer produces cellulase complexes that persist through community succession , 2017, Nature Microbiology.

[268]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[269]  Yan Guo,et al.  RNAseqPS: A Web Tool for Estimating Sample Size and Power for RNAseq Experiment , 2014, Cancer informatics.

[270]  Jordan A. Fish,et al.  Xander: employing a novel method for efficient gene-targeted metagenomic assembly , 2015, Microbiome.

[271]  Ben C. Collins,et al.  Quantitative proteomics: challenges and opportunities in basic and applied research , 2017, Nature Protocols.

[272]  Thomas J. Hardcastle,et al.  baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data , 2010, BMC Bioinformatics.

[273]  Tao Huan,et al.  Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online , 2018, Nature Protocols.

[274]  Litao Yang,et al.  Plant Metabolomics: An Indispensable System Biology Tool for Plant Science , 2016, International journal of molecular sciences.

[275]  P. Christakopoulos,et al.  Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability , 2016, Front. Microbiol..

[276]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[277]  Yasubumi Sakakibara,et al.  MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads , 2012, Nucleic acids research.

[278]  Jos Kleinjans,et al.  Transcriptomic and metabolomic data integration , 2016, Briefings Bioinform..

[279]  Rickard Sandberg,et al.  Identification of spatial expression trends in single-cell gene expression data , 2018, Nature Methods.

[280]  M. Schatz,et al.  Phased diploid genome assembly with single-molecule real-time sequencing , 2016, Nature Methods.

[281]  A. P. Souza,et al.  Correction: Author Correction , 2018 .

[282]  Charles C. Kim,et al.  Trimming of sequence reads alters RNA-Seq gene expression estimates , 2016, BMC Bioinformatics.

[283]  Arun Kumar Pandey,et al.  Metabolomics for Plant Improvement: Status and Prospects , 2017, Front. Plant Sci..

[284]  K. S. Egorova,et al.  Carbohydrate Structure Database (CSDB): Examples of Usage , 2017 .

[285]  C. Huttenhower,et al.  Metagenomic microbial community profiling using unique clade-specific marker genes , 2012, Nature Methods.

[286]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[287]  Julian N. Rosenberg,et al.  Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana , 2014, PloS one.

[288]  Alexander Goesmann,et al.  New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics. , 2013, Plant biotechnology journal.

[289]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[290]  Kiyoko F. Aoki-Kinoshita,et al.  UniCarbKB: building a knowledge platform for glycoproteomics , 2013, Nucleic Acids Res..

[291]  Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei , 2017, BMC Genomics.

[292]  Amit Ghosh Systems and Synthetic Biology for the Microbial Production of Biofuels , 2016 .

[293]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[294]  Q. Shen,et al.  Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources , 2013, Biotechnology for Biofuels.

[295]  Ioannis Xenarios,et al.  DIP: the Database of Interacting Proteins , 2000, Nucleic Acids Res..

[296]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[297]  A. A. Garcia,et al.  Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross , 2007, Molecular Breeding.

[298]  Mark Borodovsky,et al.  GENMARK: Parallel Gene Recognition for Both DNA Strands , 1993, Comput. Chem..

[299]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[300]  Zhiwei Ji,et al.  Mathematical and Computational Modeling in Complex Biological Systems , 2017, BioMed research international.

[301]  R. D. de Vries,et al.  Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse , 2011, Biotechnology for biofuels.

[302]  Dongliang Huang,et al.  Transcriptome of High-Sucrose Sugarcane Variety GT35 , 2016, Sugar Tech.

[303]  C. Ricart,et al.  Secretomic survey of Trichoderma harzianum grown on plant biomass substrates. , 2014, Journal of proteome research.

[304]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[305]  Robert Haas,et al.  Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology , 2017, Current opinion in systems biology.

[306]  Mariko Ago,et al.  Effects of Culture Conditions on Ergosterol Biosynthesis by Saccharomyces cerevisiae , 2005, Bioscience, biotechnology, and biochemistry.

[307]  Carol Soderlund,et al.  SyMAP v3.4: a turnkey synteny system with application to plant genomes , 2011, Nucleic acids research.

[308]  Siu-Ming Yiu,et al.  SOAP3: ultra-fast GPU-based parallel alignment tool for short reads , 2012, Bioinform..

[309]  Lee Whitmore,et al.  DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data , 2004, Nucleic Acids Res..

[310]  S. Tringe,et al.  Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen , 2011, Science.

[311]  I. Polikarpov,et al.  Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae , 2014, Biotechnology for Biofuels.

[312]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[313]  S. Eddy,et al.  Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions , 2013, Nucleic acids research.

[314]  Yun Feng,et al.  RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose , 2011, Applied Microbiology and Biotechnology.

[315]  E. Holmes,et al.  Substitution Model Adequacy and Assessing the Reliability of Estimates of Virus Evolutionary Rates and Time Scales. , 2016, Molecular biology and evolution.

[316]  Marcel J. T. Reinders,et al.  De novo detection of copy number variation by co-assembly , 2012, Bioinform..

[317]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[318]  B. Tian,et al.  RNA‐Seq methods for transcriptome analysis , 2017, Wiley interdisciplinary reviews. RNA.

[319]  Francesco Bongiovanni,et al.  ICoVeR – an interactive visualization tool for verification and refinement of metagenomic bins , 2017, BMC Bioinformatics.

[320]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[321]  S. J. Lee,et al.  Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives. , 2015, International journal of biological macromolecules.

[322]  J. Nielsen,et al.  Influence of carbon source on α-amylase production by Aspergillus oryzae , 2001, Applied Microbiology and Biotechnology.

[323]  J. V. van Arendonk,et al.  Economic evaluation of progeny-testing and genomic selection schemes for small-sized nucleus dairy cattle breeding programs in developing countries. , 2017, Journal of dairy science.

[324]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[325]  F. Raymond,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ray Meta: scalable de novo metagenome assembly and profiling , 2012 .

[326]  G. Perrotta,et al.  Methodologies and Perspectives of Proteomics Applied to Filamentous Fungi: From Sample Preparation to Secretome Analysis , 2015, International journal of molecular sciences.

[327]  David S. Wishart,et al.  The human saliva metabolome , 2015, Metabolomics.

[328]  Mark Gerstein,et al.  AGE: defining breakpoints of genomic structural variants at single-nucleotide resolution, through optimal alignments with gap excision , 2011, Bioinform..

[329]  Arjen Lommen,et al.  MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. , 2009, Analytical chemistry.

[330]  Alla Lapidus,et al.  Comparative genomics of xylose-fermenting fungi for enhanced biofuel production , 2011, Proceedings of the National Academy of Sciences.

[331]  Eiichiro Fukusaki,et al.  Current metabolomics: technological advances. , 2013, Journal of bioscience and bioengineering.

[332]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[333]  Guanjun Chen,et al.  Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation , 2015, Applied Biochemistry and Biotechnology.

[334]  R. Linhardt,et al.  A comparative secretome analysis of industrial Aspergillus oryzae and its spontaneous mutant ZJGS-LZ-21. , 2017, International journal of food microbiology.

[335]  M. L. Lopes,et al.  Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. , 2013, FEMS yeast research.

[336]  Chi‐Huey Wong,et al.  The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability , 2009, Proceedings of the National Academy of Sciences.

[337]  Jan P. Meier-Kolthoff,et al.  Comparative genomics of biotechnologically important yeasts , 2016, Proceedings of the National Academy of Sciences.

[338]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[339]  Gene Content Analysis of Sugarcane Public ESTs Reveals Thousands of Missing Coding-Genes and an Unexpected Pool of Grasses Conserved ncRNAs , 2012, Tropical Plant Biology.

[340]  C.R. Jiménez,et al.  Searching Sequence Databases Over the Internet: Protein Identification Using MS‐Tag , 1998, Current protocols in protein science.

[341]  A. Fernie,et al.  Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population[OPEN] , 2015, Plant Cell.

[342]  D. Aanen,et al.  Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites , 2017, Applied and Environmental Microbiology.

[343]  J. L. Argueso,et al.  Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains , 2016, Scientific Reports.

[344]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[345]  F. Delalande,et al.  Enzymatic cocktails produced by Fusarium graminearum under submerged fermentation using different lignocellulosic biomasses. , 2014, FEMS microbiology letters.

[346]  S. Bryant,et al.  Open mass spectrometry search algorithm. , 2004, Journal of proteome research.

[347]  Satendra Singh,et al.  Bioinformatics in Next-Generation Genome Sequencing , 2018 .

[348]  Atul J. Butte,et al.  Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks , 2005, BMC Bioinformatics.

[349]  David S. Wishart,et al.  MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis , 2018, Nucleic Acids Res..

[350]  I. Rocha,et al.  Genome-scale modeling of yeast: chronology, applications and critical perspectives , 2017, FEMS yeast research.

[351]  Nikola Tolić,et al.  De Novo Sequencing of Peptides from High‐Resolution Bottom‐Up Tandem Mass Spectra using Top‐Down Intended Methods , 2017, Proteomics.

[352]  Rolf Apweiler,et al.  IntEnz, the integrated relational enzyme database , 2004, Nucleic Acids Res..

[353]  Frédéric Monot,et al.  Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Medium , 1982, Applied and environmental microbiology.

[354]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[355]  M. Kanehisa,et al.  BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. , 2016, Journal of molecular biology.

[356]  P. Bisch,et al.  Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth‐promoting bacterium , 2008, Proteomics.

[357]  Yong Wang,et al.  Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis , 2016, BMC Bioinformatics.

[358]  Andrew G. Sharpe,et al.  The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure , 2014, Nature Communications.

[359]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[360]  Lazaros Mavridis,et al.  PDB2CD: a web-based application for the generation of circular dichroism spectra from protein atomic coordinates , 2017, Bioinform..

[361]  M. Kumar,et al.  An update on the nomenclature for the cellulose synthase genes in Populus. , 2009, Trends in plant science.

[362]  Zhilong Xiu,et al.  Protein–protein interaction network of the marine microalga Tetraselmis subcordiformis: prediction and application for starch metabolism analysis , 2014, Journal of Industrial Microbiology & Biotechnology.

[363]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[364]  John R Yates,et al.  The revolution and evolution of shotgun proteomics for large-scale proteome analysis. , 2013, Journal of the American Chemical Society.

[365]  Ana M. Aransay,et al.  Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing , 2016, Springer International Publishing.

[366]  Stephen S. Fong,et al.  Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production , 2010, BMC Systems Biology.

[367]  M. Berriman,et al.  REAPR: a universal tool for genome assembly evaluation , 2013, Genome Biology.

[368]  G. Shui,et al.  Metabolomics, a Powerful Tool for Agricultural Research , 2016, International journal of molecular sciences.

[369]  Jie Zhou,et al.  RNA-seq differential expression studies: more sequence or more replication? , 2014, Bioinform..

[370]  Juergen Kast,et al.  Mass spectrometry-based proteomics in biomedical research: emerging technologies and future strategies , 2010, Expert Reviews in Molecular Medicine.

[371]  Lior Pachter,et al.  Differential analysis of RNA-seq incorporating quantification uncertainty , 2016, Nature Methods.

[372]  M. N. d'Eurydice,et al.  Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse , 2014, Biotechnology for Biofuels.

[373]  A. Tsang,et al.  Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers. , 2016, Bioresource technology.

[374]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[375]  J. Bähler,et al.  Cellular and Molecular Life Sciences REVIEW RNA-seq: from technology to biology , 2022 .

[376]  E. Stauber,et al.  Proteomics of Chlamydomonas reinhardtii Light-Harvesting Proteins , 2003, Eukaryotic Cell.

[377]  Roeland M. H. Merks,et al.  Modeling Rice Metabolism: From Elucidating Environmental Effects on Cellular Phenotype to Guiding Crop Improvement , 2016, Front. Plant Sci..

[378]  M. Buckeridge,et al.  Patterns of expression of cell wall related genes in sugarcane , 2001 .

[379]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[380]  James R. Cole,et al.  Reconstructing 16S rRNA genes in metagenomic data , 2015, Bioinform..

[381]  P Poirazi,et al.  CoMuS: simulating coalescent histories and polymorphic data from multiple species , 2016, Molecular ecology resources.

[382]  M. Viljoen-Bloom,et al.  Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse , 2013, Biotechnology for Biofuels.

[383]  M. Mann,et al.  Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein*S , 2005, Molecular & Cellular Proteomics.

[384]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[385]  Kwanjeera Wanichthanarak,et al.  Genomic, Proteomic, and Metabolomic Data Integration Strategies , 2015, Biomarker insights.

[386]  Adam M. Phillippy,et al.  MUMmer4: A fast and versatile genome alignment system , 2018, PLoS Comput. Biol..

[387]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[388]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[389]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[390]  David A. Lee,et al.  CATH: comprehensive structural and functional annotations for genome sequences , 2014, Nucleic Acids Res..

[391]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[392]  Frédéric Delsuc,et al.  MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons , 2011, PloS one.

[393]  Srabanti Maji and Deepak Garg Progress in Gene Prediction: Principles and Challenges , 2013 .

[394]  Geison Cambri,et al.  Analysis of the Biotechnological Potential of a Lentinus crinitus Isolate in the Light of Its Secretome. , 2016, Journal of proteome research.

[395]  Tomáš Vinař,et al.  DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads , 2016, PloS one.

[396]  Olga Vitek,et al.  Computational Mass Spectrometry–Based Proteomics , 2011, PLoS Comput. Biol..

[397]  Tandy J. Warnow,et al.  ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes , 2015, Bioinform..

[398]  Marta Simeoni,et al.  Petri nets for modelling metabolic pathways: a survey , 2010, Natural Computing.

[399]  Francis J. Fields,et al.  Chlamydomonas as a model for biofuels and bio-products production. , 2015, The Plant journal : for cell and molecular biology.

[400]  S. Trejo-Estrada,et al.  The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity , 2016, Extremophiles.

[401]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[402]  Jie Ma,et al.  Improving X!Tandem on Peptide Identification from Mass Spectrometry by Self-Boosted Percolator , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[403]  John Ralph,et al.  Advances in modifying lignin for enhanced biofuel production. , 2010, Current opinion in plant biology.

[404]  Alexander Goesmann,et al.  MeltDB 2.0–advances of the metabolomics software system , 2013, Bioinform..

[405]  Thomas Hackl,et al.  proovread: large-scale high-accuracy PacBio correction through iterative short read consensus , 2014, Bioinform..

[406]  M. Frith,et al.  Adaptive seeds tame genomic sequence comparison. , 2011, Genome research.

[407]  Kannan Ramchandran,et al.  abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation , 2017, WABI.

[408]  Li-Min Zhang,et al.  Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour) , 2015, Theoretical and Applied Genetics.

[409]  L. Lynd,et al.  Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol , 2017, Biotechnology for Biofuels.

[410]  M. Seibert,et al.  Examination of Triacylglycerol Biosynthetic Pathways via De Novo Transcriptomic and Proteomic Analyses in an Unsequenced Microalga , 2011, PloS one.

[411]  J. Rothberg,et al.  The development and impact of 454 sequencing , 2008, Nature Biotechnology.

[412]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[413]  S. Komatsu,et al.  Proteomic analysis of soybean hypocotyl during recovery after flooding stress. , 2015, Journal of proteomics.

[414]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[415]  S. Ho,et al.  The Impact of the Tree Prior on Molecular Dating of Data Sets Containing a Mixture of Inter‐ and Intraspecies Sampling , 2016, Systematic biology.

[416]  Christoph Steinbeck,et al.  MetaboLights: An Open‐Access Database Repository for Metabolomics Data , 2016, Current protocols in bioinformatics.

[417]  Peter D. Karp,et al.  The MetaCyc Database , 2002, Nucleic Acids Res..

[418]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[419]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[420]  R. W. Janes,et al.  DichroMatch at the protein circular dichroism data bank (DM@PCDDB): A web‐based tool for identifying protein nearest neighbors using circular dichroism spectroscopy , 2017, Protein science : a publication of the Protein Society.

[421]  Siu-Ming Yiu,et al.  IDBA - A Practical Iterative de Bruijn Graph De Novo Assembler , 2010, RECOMB.

[422]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[423]  Katharina J. Hoff,et al.  BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS , 2016, Bioinform..

[424]  Lana X Garmire,et al.  Power analysis and sample size estimation for RNA-Seq differential expression , 2014, RNA.

[425]  Shanrong Zhao,et al.  Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion , 2018, Scientific Reports.

[426]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[427]  Alvin T. Liem,et al.  Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer , 2015, GigaScience.

[428]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[429]  “Candidatus Paraporphyromonas polyenzymogenes” encodes multi-modular cellulases linked to the type IX secretion system , 2018, Microbiome.

[430]  D. Hincha,et al.  Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles. , 2017, Plant, cell & environment.

[431]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[432]  Jinsheng Lai,et al.  Dynamic Transcriptome Landscape of Maize Embryo and Endosperm Development1[W][OPEN] , 2014, Plant Physiology.

[433]  J. Lederberg,et al.  `Ome Sweet `Omics--A Genealogical Treasury of Words , 2001 .

[434]  Donovan Parks,et al.  GroopM: an automated tool for the recovery of population genomes from related metagenomes , 2014, PeerJ.

[435]  Robert D. Finn,et al.  EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies , 2017, Nucleic Acids Res..

[436]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[437]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[438]  H. Kawaguchi,et al.  Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content , 2015, Biotechnology for Biofuels.

[439]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[440]  M. Marra,et al.  Applications of next-generation sequencing technologies in functional genomics. , 2008, Genomics.

[441]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. , 2015, F1000Research.

[442]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[443]  Alexander J Probst,et al.  Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy , 2017, Nature Microbiology.

[444]  Olga Vitek,et al.  A statistical model-building perspective to identification of MS/MS spectra with PeptideProphet , 2012, BMC Bioinformatics.

[445]  M. Menossi,et al.  microRNAs Associated with Drought Response in the Bioenergy Crop Sugarcane (Saccharum spp.) , 2012, PloS one.

[446]  Robert Turgeon,et al.  The developmental dynamics of the maize leaf transcriptome , 2010, Nature Genetics.

[447]  Gordon S. Rule,et al.  Fundamentals of Protein NMR Spectroscopy , 2005 .

[448]  E. Eichler,et al.  Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. , 2009, Genome research.

[449]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[450]  E. Stauber,et al.  Chlamydomonas reinhardtii proteomics. , 2004, Plant physiology and biochemistry : PPB.

[451]  A. Gasch,et al.  Incorporating comparative genomics into the design‐test‐learn cycle of microbial strain engineering , 2017, FEMS yeast research.

[452]  M. Borodovsky,et al.  Ab initio gene identification in metagenomic sequences , 2010, Nucleic acids research.

[453]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[454]  Serge Pérez,et al.  Glyco3D: a portal for structural glycosciences. , 2015, Methods in molecular biology.

[455]  Rebecca Cullum,et al.  The next generation: Using new sequencing technologies to analyse gene regulation , 2011, Respirology.

[456]  Zerihun T. Dame,et al.  The Human Urine Metabolome , 2013, PloS one.

[457]  Robert A. Edwards,et al.  From DNA to FBA: How to Build Your Own Genome-Scale Metabolic Model , 2016, Frontiers in microbiology.

[458]  Ming-Qiang Zhu,et al.  Epoxidation and etherification of alkaline lignin to prepare water-soluble derivatives and its performance in improvement of enzymatic hydrolysis efficiency , 2016, Biotechnology for Biofuels.

[459]  J. D. Mills,et al.  Send Orders of Reprints at Reprints@benthamscience.net Strand-specific Rna-seq Provides Greater Resolution of Transcriptome Profiling , 2022 .

[460]  R. Vicentini,et al.  De Novo Assembly and Transcriptome Analysis of Contrasting Sugarcane Varieties , 2014, PloS one.

[461]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[462]  E. Mardis DNA sequencing technologies: 2006–2016 , 2017, Nature Protocols.

[463]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[464]  M. Klimacek,et al.  Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts , 2015, Biotechnology for Biofuels.

[465]  J. Coon,et al.  A proteomics search algorithm specifically designed for high-resolution tandem mass spectra. , 2013, Journal of proteome research.

[466]  J. Pérez-Ortín,et al.  Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation , 2007, Applied and Environmental Microbiology.

[467]  James Clarke,et al.  Nanopore development at Oxford Nanopore , 2016, Nature Biotechnology.