On ℋ︁∞ model reduction for discrete‐time linear time‐invariant systems using linear matrix inequalities

In this paper, we address the ℋ︁∞ model reduction problem for linear time‐invariant discrete‐time systems. We revisit this problem by means of linear matrix inequality (LMI) approaches and first show a concise proof for the well‐known lower bounds on the approximation error, which is given in terms of the Hankel singular values of the system to be reduced. In addition, when we reduce the system order by the multiplicity of the smallest Hankel singular value, we show that the ℋ︁∞ optimal reduced‐order model can readily be constructed via LMI optimization. These results can be regarded as complete counterparts of those recently obtained in the continuous‐time system setting.

[1]  J.C. Geromel,et al.  H/sub /spl infin// model reduction with application to flexible systems , 2005, IEEE Transactions on Automatic Control.

[2]  Tomomichi Hagiwara,et al.  On H/sub /spl infin// model reduction using LMIs , 2004 .

[3]  J. C. Geromel *,et al.  Model reduction of discrete time systems through linear matrix inequalities* , 2004 .

[4]  Huijun Gao,et al.  H ∞ model reduction for discrete time-delay systems: delay-independent and dependent approaches , 2004 .

[5]  Henrik Sandberg,et al.  Balanced truncation of linear time-varying systems , 2004, IEEE Transactions on Automatic Control.

[6]  Carolyn L. Beck,et al.  Model reduction of stabilizable nonstationary LPV models , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  Takao Watanabe,et al.  A unified algebraic approach to linear control design: Robert E. Skelton, Tetsuya Iwasaki and Karolos M. Grigoriadis; Copyright Taylor & Francis, 1998, ISBN: 0-7484-0592-5 , 2003, Autom..

[8]  James Lam,et al.  H∞ model reduction of Markovian jump linear systems , 2003, Syst. Control. Lett..

[9]  Fen Wu,et al.  Computationally Efficient Algorithm For Frequency‐Weighted Optimal H∞ Model Reduction , 2003 .

[10]  Sanjay Lall,et al.  Error-bounds for balanced model-reduction of linear time-varying systems , 2003, IEEE Trans. Autom. Control..

[11]  Shengyuan Xu,et al.  H∞ model reduction for discrete-time singular systems , 2003, Syst. Control. Lett..

[12]  Tetsuya Iwasaki,et al.  The dual iteration for fixed-order control , 1999, IEEE Trans. Autom. Control..

[13]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[14]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[15]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[16]  K. Grigoriadis Optimal H ∞ model reduction via linear matrix inequalities: continuous- and discrete-time cases , 1995 .

[17]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[18]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[19]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[20]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[21]  Gene F. Franklin,et al.  An error bound for a discrete reduced order model of a linear multivariable system , 1987 .

[22]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[23]  W. Kahan,et al.  NORM-PRESERVING DILATIONS AND THEIR APPLICATIONS TO OPTIMAL ERROR BOUNDS* , 1982 .

[24]  D. Lin,et al.  Optimal Hankel-norm model reductions: Multivariable systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[25]  S. Parrott,et al.  On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem , 1978 .

[26]  Tomomichi Hagiwara,et al.  On H∞ model reduction using LMIs , 2004, IEEE Trans. Autom. Control..

[27]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .