AN INNOVATIVE VOLUME BASED VIDEO FEATURE EXTRACTION TECHNIQUE

Based on the video frames, a spatial-temporal volume data structure represents more flexible processing methods than traditional 2D sequential images approach in computer vision. This paper describes the data structure of the spatial-temporal volume and the feature volume coming from the original video data. A compressed volume structure called a feature video is presented showing how a feature volume can be build based on the sequential frames. The existent 3D volume processing methods such as slice processing, 3D filters and CFD methods are also introduced in this paper. As a practical application, human gait analysis based on volume slice processing is described. This includes the video capture, volume organized and the slice feature extraction. The result of experimental data shows the different features between different behaviors of gait.

[1]  I. Gu,et al.  Analysing Video Sequences using the Spatio-temporal Volume , 2004 .

[2]  Richard Szeliski,et al.  On the Motion and Appearance of Specularities in Image Sequences , 2002, ECCV.

[3]  Amar Mitiche,et al.  Motion tracking as spatio-temporal motion boundary detection , 2003, Robotics Auton. Syst..

[4]  Gerald Kühne,et al.  Motion-based segmentation and contour-based classification of video objects , 2001, MULTIMEDIA '01.

[5]  Seth J. Teller,et al.  Particle Video: Long-Range Motion Estimation Using Point Trajectories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Shmuel Peleg,et al.  A unified approach for motion analysis and view synthesis , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[7]  Ryusuke Sagawa,et al.  Gait Volume : Spatio-Temporal Analysis of Walking , 2003 .

[8]  Daniel DeMenthon,et al.  SPATIO-TEMPORAL SEGMENTATION OF VIDEO BY HIERARCHICAL MEAN SHIFT ANALYSIS , 2002 .

[9]  Janusz Konrad,et al.  Joint space-time image sequence segmentation: object tunnels and occlusion volumes , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[11]  Robert C. Bolles,et al.  Generalizing Epipolar-Plane Image Analysis on the spatiotemporal surface , 2004, International Journal of Computer Vision.

[12]  K. Hoffmann,et al.  Computational Fluid Dynamics for Engineers , 1989 .

[13]  T. Garvey,et al.  Motion tracking on the spatiotemporal surface , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[14]  Chong-Wah Ngo,et al.  Motion analysis and segmentation through spatio-temporal slices processing , 2003, IEEE Trans. Image Process..

[15]  Harry Shum,et al.  Efficient Dense Depth Estimation from Dense Multiperspective Panoramas , 2001, ICCV.

[16]  Shmuel Peleg,et al.  A unified approach for motion analysis and view synthesis , 2004 .

[17]  Gregory R. Andrews,et al.  Foundations of Multithreaded, Parallel, and Distributed Programming , 1999 .

[18]  K. Ikeuchi,et al.  Panoramic-View-and Epipolar-Plane-Image Understandings for Street-Parking Vehicle Detection , 2003 .

[19]  Katsushi Ikeuchi,et al.  ENHANCED NAVIGATION SYSTEM WITH REAL IMAGES AND REAL-TIME INFORMATION , 2001 .

[20]  Chi-Keung Tang,et al.  Efficient Dense Depth Estimation from Dense Multiperspective Panoramas , 2001, ICCV.

[21]  Hiroshi Kawasaki,et al.  Ego-Motion Estimation for Efficient City Modeling by Using Epipolar Plane Range Image Analysis , 2003 .

[22]  Chong-Wah Ngo,et al.  Motion characterization by temporal slices analysis , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).