Measurements and numerical calculations of thermal conductivity to evaluate the quality of β-gallium oxide thin films grown on sapphire and silicon carbide by molecular beam epitaxy

We report a method to obtain insight into lower thermal conductivity of β-Ga2O3 thin films grown by molecular beam epitaxy (MBE) on c-plane sapphire and 4H-SiC substrates. We compare experimental values against the numerical predictions to decipher the effect of boundary scattering and defects in thin-films. We used time domain thermoreflectance to perform the experiments, density functional theory and the Boltzmann transport equation for thermal conductivity calculations, and the diffuse mismatch model for thermal boundary conductance predictions. The experimental thermal conductivities were approximately three times smaller than those calculated for perfect Ga2O3 crystals of similar size. When considering the presence of grain boundaries, gallium and oxygen vacancies, and stacking faults in the calculations, the crystals that present around 1% of gallium vacancies and a density of stacking faults of 106 faults/cm were the ones whose thermal conductivities were closer to the experimental results. Our analysis suggests the level of different types of defects present in the Ga2O3 crystal that could be used to improve the quality of MBE-grown samples by reducing these defects and, thereby, produce materials with higher thermal conductivities.

[1]  C. McGray,et al.  Ga2O3-on-SiC Composite Wafer for Thermal Management of Ultrawide Bandgap Electronics. , 2021, ACS applied materials & interfaces.

[2]  Joydeep Munshi,et al.  Effect of vacancy defects on the thermal transport of β-Ga2O3 , 2021 .

[3]  J. Maria,et al.  Thermal Conductivity of β-Phase Ga2O3 and (AlxGa1-x)2o3 Heteroepitaxial Thin Films. , 2021, ACS applied materials & interfaces.

[4]  Jared M. Johnson,et al.  Thermal Transport across Metal/β-Ga2O3 Interfaces. , 2021, ACS applied materials & interfaces.

[5]  D. Katzer,et al.  Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy , 2020 .

[6]  T. Suga,et al.  Thermal Transport across Ion-cut Monocrystalline β-Ga2O3 Thin Films and Bonded β-Ga2O3-SiC Interfaces. , 2020, ACS applied materials & interfaces.

[7]  D. Katzer,et al.  Thermal Conductivity of β-Ga2O3 Thin Films Grown by Molecular Beam Epitaxy , 2020, 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).

[8]  F. Ren,et al.  In Situ Observation of β-Ga2O3 Schottky Diode Failure Under Forward Biasing Condition , 2020, IEEE Transactions on Electron Devices.

[9]  J. Muth,et al.  Self-Heating Characterization of $\beta$ -Ga2O3 Thin-Channel MOSFETs by Pulsed ${I}$ –${V}$ and Raman Nanothermography , 2020 .

[10]  S. Koester,et al.  Thickness-dependent thermal conductivity of mechanically exfoliated β-Ga2O3 thin films , 2020, Applied Physics Letters.

[11]  Nitish Kumar,et al.  Ultrafast Thermoreflectance Imaging and Electrothermal Modeling of β-Ga2O3 MESFETs , 2020, IEEE Electron Device Letters.

[12]  J. Muth,et al.  Thermal conductivity of ultra-wide bandgap thin layers – High Al-content AlGaN and β-Ga2O3 , 2020, Physica B: Condensed Matter.

[13]  A. McGaughey,et al.  Chemical Reactions Impede Thermal Transport Across Metal/β-Ga2O3 Interfaces. , 2019, Nano letters.

[14]  Nitish Kumar,et al.  Electrothermal Characteristics of Delta-Doped $\beta$ -Ga2O3 Metal–Semiconductor Field-Effect Transistors , 2019, IEEE Transactions on Electron Devices.

[15]  Jared M. Johnson,et al.  Unusual Formation of Point-Defect Complexes in the Ultrawide-Band-Gap Semiconductor β−Ga2O3 , 2019, Physical Review X.

[16]  Xiaolong Zou,et al.  Phonon-Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS2. , 2019, ACS applied materials & interfaces.

[17]  C. Nordquist,et al.  Device-Level Thermal Management of Gallium Oxide Field-Effect Transistors , 2019, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[18]  H. Chen,et al.  Demonstration of mechanically exfoliated β-Ga2O3/GaN p-n heterojunction , 2019, Applied Physics Letters.

[19]  M. Stutzmann,et al.  Growth and characterization of β-Ga2O3 thin films on different substrates , 2019, Journal of Applied Physics.

[20]  M. Uren,et al.  Raman Thermography of Peak Channel Temperature in $\beta$ -Ga2O3 MOSFETs , 2019, IEEE Electron Device Letters.

[21]  K. Hobart,et al.  Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces , 2019, APL Materials.

[22]  Ronggui Yang,et al.  Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3 , 2018, Applied Physics Letters.

[23]  Satish Kumar,et al.  Phonon mode contributions to thermal conductivity of pristine and defective β-Ga2O3. , 2018, Physical chemistry chemical physics : PCCP.

[24]  M. Yoon,et al.  Influence of defects and doping on phonon transport properties of monolayer MoSe2 , 2018 .

[25]  F. Kaess,et al.  Thermal conductivity of bulk and thin film β-Ga2O3 measured by the 3ω technique , 2018, OPTO.

[26]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[27]  Jonathan P. McCandless,et al.  Recessed-Gate Enhancement-Mode $\beta $ -Ga2O3 MOSFETs , 2018, IEEE Electron Device Letters.

[28]  Zbigniew Galazka,et al.  $\beta$ -Ga2O3 MOSFETs for Radio Frequency Operation , 2017, IEEE Electron Device Letters.

[29]  Ali Shakouri,et al.  β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect , 2017, 1703.06197.

[30]  S. Yamakoshi,et al.  Characterization of channel temperature in Ga2O3 metal-oxide-semiconductor field-effect transistors by electrical measurements and thermal modeling , 2016 .

[31]  Liang Zhao,et al.  The relationship between the dislocations and microstructure in In0.82Ga0.18As/InP heterostructures , 2016, Scientific Reports.

[32]  Thomas L. Bougher,et al.  Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance with Robust Monte Carlo Uncertainty Estimation , 2016 .

[33]  T. Moustakas,et al.  Thermal transport through GaN–SiC interfaces from 300 to 600 K , 2015 .

[34]  John D. Albrecht,et al.  Lattice thermal conductivity in β-Ga2O3 from first principles , 2015 .

[35]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[36]  M. Baldini,et al.  Electrical compensation by Ga vacancies in Ga{sub 2}O{sub 3} thin films , 2015 .

[37]  D. Jena,et al.  Anisotropic thermal conductivity in single crystal β-gallium oxide , 2014, 1412.7472.

[38]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[39]  Gang Zhang,et al.  A Bond-order Theory on the Phonon Scattering by Vacancies in Two-dimensional Materials , 2014, Scientific Reports.

[40]  M. Albrecht,et al.  High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes , 2013, 1310.6824.

[41]  D. Cahill,et al.  Invited article: micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. , 2013, The Review of scientific instruments.

[42]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[43]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .

[44]  J. Rogers,et al.  Interfacial Thermal Conductance of Transfer‐Printed Metal Films , 2011, Advanced materials.

[45]  T. Beechem,et al.  Contribution of optical phonons to thermal boundary conductance , 2010 .

[46]  Matteo Chiesa,et al.  An optical pump-probe technique for measuring the thermal conductivity of liquids. , 2008, The Review of scientific instruments.

[47]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[48]  B. K. Singh,et al.  Phonon conductivity of plastically deformed crystals : Role of stacking faults and dislocations , 2006 .

[49]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[50]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[53]  G. Svensson,et al.  A Reinvestigation of β-Gallium Oxide , 1996 .

[54]  P. Auerkari Mechanical and physical properties of engineering alumina ceramics , 1996 .

[55]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[56]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[57]  P. Klemens,et al.  Scattering of phonons by vacancies , 1987 .

[58]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[59]  E. D. West,et al.  Enthalpy and Heat-Capacity Standard Reference Material: Synthetic Sapphire (α-Al2O3) from 10 to 2250 K. , 1982, Journal of research of the National Bureau of Standards.

[60]  S. C. Saxena,et al.  Thermophysical Properties of Matter - the TPRC Data Series. Volume 11. Viscosity , 1975 .

[61]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[62]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .