4D imaging through spray-on optics

Light fields are a powerful concept in computational imaging and a mainstay in image-based rendering; however, so far their acquisition required either carefully designed and calibrated optical systems (micro-lens arrays), or multi-camera/multi-shot settings. Here, we show that fully calibrated light field data can be obtained from a single ordinary photograph taken through a partially wetted window. Each drop of water produces a distorted view on the scene, and the challenge of recovering the unknown mapping from pixel coordinates to refracted rays in space is a severely underconstrained problem. The key idea behind our solution is to combine ray tracing and low-level image analysis techniques (extraction of 2D drop contours and locations of scene features seen through drops) with state-of-the-art drop shape simulation and an iterative refinement scheme to enforce photo-consistency across features that are seen in multiple views. This novel approach not only recovers a dense pixel-to-ray mapping, but also the refractive geometry through which the scene is observed, to high accuracy. We therefore anticipate that our inherently self-calibrating scheme might also find applications in other fields, for instance in materials science where the wetting properties of liquids on surfaces are investigated.

[1]  Takeo Kanade,et al.  A multi-layered display with water drops , 2010, SIGGRAPH 2010.

[2]  Ramesh Raskar,et al.  Glare aware photography: 4D ray sampling for reducing glare effects of camera lenses , 2008, SIGGRAPH 2008.

[3]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[4]  Bastian Goldlücke,et al.  Light Field Imaging through Household Optics , 2015, VMV.

[5]  Stanimir Iliev,et al.  Iterative method for the shape of static drops , 1995 .

[6]  Andrew Blake,et al.  Geodesic star convexity for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Hans-Peter Seidel,et al.  A dynamic BRDF display , 2011, SIGGRAPH '11.

[8]  Li-Yi Wei,et al.  Improving light field camera sample design with irregularity and aberration , 2015, ACM Trans. Graph..

[9]  Hans-Peter Seidel,et al.  A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging , 2013, ACM Trans. Graph..

[10]  Feidhlim T. O'Neill,et al.  Photoresist reflow method of microlens production Part I: Background and experiments , 2002 .

[11]  Alexei A. Efros,et al.  Depth Estimation with Occlusion Modeling Using Light-Field Cameras , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[13]  Hans-Peter Seidel,et al.  3D acquisition of mirroring objects using striped patterns , 2005, Graph. Model..

[14]  Tadayoshi Kohno,et al.  Seeing through Obscure Glass , 2010, ECCV.

[15]  Stanimir D. Iliev and,et al.  Wetting Properties of Well-Structured Heterogeneous Substrates , 2003 .

[16]  Michael Weinmann,et al.  Multi-view Normal Field Integration for 3D Reconstruction of Mirroring Objects , 2013, 2013 IEEE International Conference on Computer Vision.

[17]  Laura Waller,et al.  Single-shot diffuser-encoded light field imaging , 2016, 2016 IEEE International Conference on Computational Photography (ICCP).

[18]  David Salesin,et al.  Spatio-angular resolution tradeoffs in integral photography , 2006, EGSR '06.

[19]  Takeo Kanade,et al.  A multi-layered display with water drops , 2010, ACM Trans. Graph..

[20]  Frédo Durand,et al.  Unstructured Light Fields , 2012, Comput. Graph. Forum.

[21]  Ren Ng Fourier Slice Photography , 2005 .

[22]  Yael Pritch,et al.  Scene reconstruction from high spatio-angular resolution light fields , 2013, ACM Trans. Graph..

[23]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[24]  R. Fergus,et al.  Random Lens Imaging , 2006 .

[25]  Kiriakos N. Kutulakos,et al.  Transparent and Specular Object Reconstruction , 2010, Comput. Graph. Forum.

[26]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[27]  Jitendra Malik,et al.  Depth from Combining Defocus and Correspondence Using Light-Field Cameras , 2013, 2013 IEEE International Conference on Computer Vision.

[28]  Paul Hickson,et al.  Large Zenith Telescope project: a 6-m mercury-mirror telescope , 1998, Astronomical Telescopes and Instrumentation.

[29]  Rob Fergus,et al.  Restoring an Image Taken through a Window Covered with Dirt or Rain , 2013, 2013 IEEE International Conference on Computer Vision.

[30]  Ramesh Raskar,et al.  Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing , 2007, SIGGRAPH 2007.

[31]  M. Levoy,et al.  Light field microscopy , 2006, SIGGRAPH 2006.

[32]  Daniel Cremers,et al.  The Natural Vectorial Total Variation Which Arises from Geometric Measure Theory , 2012, SIAM J. Imaging Sci..

[33]  Ramesh Raskar,et al.  Axial-cones: modeling spherical catadioptric cameras for wide-angle light field rendering , 2010, SIGGRAPH 2010.

[34]  Antonio Torralba,et al.  Accidental Pinhole and Pinspeck Cameras , 2014, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[36]  Gordon Wetzstein,et al.  On Plenoptic Multiplexing and Reconstruction , 2012, International Journal of Computer Vision.

[37]  Katsushi Ikeuchi,et al.  Waterdrop Stereo , 2016, ArXiv.

[38]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[39]  A. Adamson Physical chemistry of surfaces , 1960 .

[40]  H. Seidel,et al.  Fluorescent immersion range scanning , 2008, ACM Trans. Graph..

[41]  Bastian Goldlücke,et al.  A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields , 2016, ACCV.

[42]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[43]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[44]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[45]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[46]  Sven Wanner,et al.  Variational Light Field Analysis for Disparity Estimation and Super-Resolution , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  R. Cerbino Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2006 .

[48]  Kiriakos N. Kutulakos,et al.  A Theory of Refractive and Specular 3D Shape by Light-Path Triangulation , 2005, ICCV.

[49]  Nina Pesheva,et al.  Nonaxisymmetric drop shape analysis and its application for determination of the local contact angles. , 2006, Journal of colloid and interface science.

[50]  Gordon Wetzstein,et al.  Computational Plenoptic Imaging , 2011, Comput. Graph. Forum.

[51]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[52]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[53]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[54]  Marc Levoy,et al.  High performance imaging using large camera arrays , 2005, ACM Trans. Graph..

[55]  Iasonas Kokkinos,et al.  Describing Textures in the Wild , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Ken Perlin,et al.  Measuring bidirectional texture reflectance with a kaleidoscope , 2003, ACM Trans. Graph..

[57]  Iliev Static Drops on an Inclined Plane: Equilibrium Modeling and Numerical Analysis , 1997, Journal of colloid and interface science.

[58]  Yasushi Yagi,et al.  Hemispherical Confocal Imaging , 2011, IPSJ Trans. Comput. Vis. Appl..

[59]  Hans-Peter Seidel,et al.  Dynamic Display of BRDFs , 2011, Comput. Graph. Forum.