Image Representations for Pattern Recognition

One of the main requirements in many signal processing applications is to have a "meaningful representation'' in which signal's characteristics are readily apparent. For example, for recognition, the representation should highlight salient features; for denoising, it should efficiently separate signal and noise; and for compression, it should capture a large part of signal using only a few coefficients. Interestingly, despite these seemingly different goals, good performance of signal processing applications generally has roots in the appropriateness of the adopted representations. Representing a signal involves the design of a set of elementary generating signals, or a dictionary of atoms, which is used to decompose the signal. For many years, dictionary design has been pursued by many researchers for various fields of applications: Fourier transform was proposed to solve the heat equation; Radon transform was created for the reconstruction problem; wavelet transform was developed for piece-wise smooth, one-dimensional signals with a finite number of discontinuities; and contourlet transform was designed to efficiently represent two-dimensional signals made of smooth regions separated by smooth boundaries, etc. For the developed dictionaries up to the present time, they can be roughly classified into two families: mathematical models of the data and sets of realizations of the data. Dictionaries of the first family are characterized by analytical formulations, which can sometimes be fast implemented. The representation coefficients of a signal in one dictionary are obtained by performing signal transform. Dictionaries of the second family, which are often general overcomplete, deliver greater flexibility and the ability to adapt to specific signal data. They are the results of much more recent dictionary designing approaches where dictionaries are learned from data for their representation. The existence of many dictionaries naturally leads to the problem of selecting the most appropriate one for the representation of signals in a certain situation. The selected dictionary should have distinguished and beneficial properties which are preferable in the targeted applications. Speaking differently, it is the actual application that controls the selection of dictionary, not the reverse. In the framework of this thesis, three types of dictionaries, which correspond to three types of transforms/representations, will be studied for their applicability in some image analysis and pattern recognition tasks. They are the Radon transform, unit disk-based moments, and sparse representation. The Radon transform and unit disk-based moments are for invariant pattern recognition problems, whereas sparse representation for image denoising, separation, and classification problems. This thesis contains a number of theoretical contributions which are accompanied by numerous validating experimental results. For the Radon transform, it discusses possible directions that can be followed to define invariant pattern descriptors, leading to the proposal of two descriptors that are totally invariant to rotation, scaling, and translation. For unit disk-based moments, it presents a unified view on strategies that have been used to define unit disk-based orthogonal moments, leading to the proposal of four generic polar harmonic moments and strategies for their fast computation. For sparse representation, it uses sparsity-based techniques for denoising and separation of graphical document images and proposes a representation framework that balances the three criteria sparsity, reconstruction error, and discrimination power for classification.

[1]  Zhaoyang Lu,et al.  Detection of Text Regions From Digital Engineering Drawings , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[3]  Mike E. Davies,et al.  Dictionary Learning for Sparse Approximations With the Majorization Method , 2009, IEEE Transactions on Signal Processing.

[4]  A. Bhatia,et al.  On the circle polynomials of Zernike and related orthogonal sets , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Chee-Way Chong,et al.  A comparative analysis of algorithms for fast computation of Zernike moments , 2003, Pattern Recognit..

[6]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[7]  R. Massey,et al.  Polar Shapelets , 2004, astro-ph/0408445.

[8]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[9]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[10]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[11]  Ehud Rivlin,et al.  Applying algebraic and differential invariants for logo recognition , 1996, Machine Vision and Applications.

[12]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Ke Huang,et al.  Sparse Representation for Signal Classification , 2006, NIPS.

[14]  Atilla Baskurt,et al.  Generalizations of angular radial transform for 2D and 3D shape retrieval , 2005, Pattern Recognit. Lett..

[15]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[16]  Yiannis S. Boutalis,et al.  Numerical error analysis in Zernike moments computation , 2006, Image Vis. Comput..

[17]  Salvatore Tabbone,et al.  Text extraction from graphical document images using sparse representation , 2010, DAS '10.

[18]  Ernest Valveny,et al.  Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Adam Krzyzak,et al.  Invariant pattern recognition using radon, dual-tree complex wavelet and Fourier transforms , 2009, Pattern Recognit..

[20]  Atilla Baskurt,et al.  Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Yan Qiu Chen,et al.  Invariant Description and Retrieval of Planar Shapes Using Radon Composite Features , 2008, IEEE Transactions on Signal Processing.

[22]  Avideh Zakhor,et al.  Dictionary design for matching pursuit and application to motion-compensated video coding , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Martin L. Brady,et al.  A Fast Discrete Approximation Algorithm for the Radon Transform , 1998, SIAM J. Comput..

[24]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[25]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[26]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[27]  Surong Hasi,et al.  Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments. , 2004, Applied optics.

[28]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[29]  Ziliang Ping,et al.  Multidistortion-invariant image recognition with radial harmonic Fourier moments. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[31]  Whoi-Yul Kim,et al.  A novel approach to the fast computation of Zernike moments , 2006, Pattern Recognit..

[32]  Horst Bischof,et al.  Robust Recognition Using Eigenimages , 2000, Comput. Vis. Image Underst..

[33]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[34]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[35]  Qing Wang,et al.  Fast computation of 3D spherical Fourier harmonic descriptors - a complete orthonormal basis for a rotational invariant representation of three-dimensional objects , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[36]  J Duvernoy,et al.  Circular-Fourier-radial-Mellin transform descriptors for pattern recognition. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[37]  W. M. Thorburn,et al.  THE MYTH OF OCCAM'S RAZOR , 1918 .

[38]  Hon-Son Don,et al.  3-D Moment Forms: Their Construction and Application to Object Identification and Positioning , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Jian Zou,et al.  Generic orthogonal moments: Jacobi-Fourier moments for invariant image description , 2007, Pattern Recognit..

[40]  Xudong Jiang,et al.  Two-Dimensional Polar Harmonic Transforms for Invariant Image Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Hamid Soltanian-Zadeh,et al.  Radon transform orientation estimation for rotation invariant texture analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Chew Lim Tan,et al.  Text/Graphics Separation in Maps , 2001, GREC.

[43]  JEFFREY WOOD,et al.  Invariant pattern recognition: A review , 1996, Pattern Recognit..

[44]  T. Mark Dunster Legendre and related functions , 2010, NIST Handbook of Mathematical Functions.

[45]  Dov Dori,et al.  Segmentation and Recognition of Dimensioning Text from Engineering Drawings , 1998, Comput. Vis. Image Underst..

[46]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[47]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[48]  Sylvain Paris,et al.  Blur kernel estimation using the radon transform , 2011, CVPR 2011.

[49]  René Vidal,et al.  Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Donggang Yu,et al.  An efficient algorithm for smoothing, linearization and detection of structural feature points of binary image contours , 1997, Pattern Recognit..

[51]  Atilla Baskurt,et al.  3D mirror symmetry detection using Hough transform , 2008, 2008 15th IEEE International Conference on Image Processing.

[52]  Whoi-Yul Kim,et al.  Robust Rotation Angle Estimator , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[54]  Philip N. Klein,et al.  Recognition of shapes by editing their shock graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  L. O'Gorman Image and document processing techniques for the RightPages electronic library system , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[56]  P. Tseng,et al.  Block Coordinate Relaxation Methods for Nonparametric Wavelet Denoising , 2000 .

[57]  Faouzi Ghorbel,et al.  Robust and Efficient Fourier-Mellin Transform Approximations for Gray-Level Image Reconstruction and Complete Invariant Description , 2001, Comput. Vis. Image Underst..

[58]  Svetha Venkatesh,et al.  Joint learning and dictionary construction for pattern recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[60]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[61]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[62]  Raveendran Paramesran,et al.  On the computational aspects of Zernike moments , 2007, Image Vis. Comput..

[63]  Gerlind Plonka-Hoch,et al.  The Curvelet Transform , 2010, IEEE Signal Processing Magazine.

[64]  Pat Yip,et al.  Sine and Cosine Transforms , 2000 .

[65]  Sei-ichiro Kamata,et al.  Fast Polar and Spherical Fourier Descriptors for Feature Extraction , 2010 .

[66]  Salvatore Tabbone,et al.  Extraction of Nom Text Regions from Stele Images Using Area Voronoi Diagram , 2009, 2009 10th International Conference on Document Analysis and Recognition.

[67]  Chew Lim Tan,et al.  Text extraction using pyramid , 1998, Pattern Recognit..

[68]  Sanja Fidler,et al.  Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Shuguang Guan,et al.  Fourier-Bessel analysis of patterns in a circular domain , 2001 .

[70]  Alexander Poularikas,et al.  The Mellin Transform , 1998 .

[71]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Violet F. Leavers Use of the Two-Dimensional Radon Transform to Generate a Taxonomy of Shape for the Characterization of Abrasive Powder Particles , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[74]  Hjouj Hjouj,et al.  Identification of Reflected, Scaled, Translated, and Rotated Objects From Their Radon Projections , 2008, IEEE Transactions on Image Processing.

[75]  M. Teague Image analysis via the general theory of moments , 1980 .

[76]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[77]  Guillermo Sapiro,et al.  Sparse representations for image classification: learning discriminative and reconstructive non-parametric dictionaries , 2008 .

[78]  D. Casasent,et al.  New optical transforms for pattern recognition , 1977, Proceedings of the IEEE.

[79]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[80]  Guillermo Sapiro,et al.  Classification and clustering via dictionary learning with structured incoherence and shared features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[81]  Svetha Venkatesh,et al.  Sparse Subspace Clustering via Group Sparse Coding , 2013, SDM.

[82]  Giovanni Jacovitti,et al.  Multiresolution circular harmonic decomposition , 2000, IEEE Trans. Signal Process..

[83]  Shekhar S. Chandra Circulant theory of the Radon transform , 2010 .

[84]  Lyle H. Johnson The shift and scale invariant Fourier-Mellin transform for radar applications , 1980 .

[85]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[86]  Ronald R. Coifman,et al.  A Framework for Discrete Integral Transformations II-The 2D Discrete Radon Transform , 2008, SIAM J. Sci. Comput..

[87]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[88]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  Thomas S. Huang,et al.  Inverse filtering for linear shift-variant imaging systems , 1972 .

[90]  R. Altes The Fourier-Mellin transform and mammalian hearing. , 1978, The Journal of the Acoustical Society of America.

[91]  Maarten Jansen,et al.  Noise Reduction by Wavelet Thresholding , 2001 .

[92]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[93]  Ramakrishna Kakarala,et al.  DISK-HARMONIC COEFFICIENTS FOR INVARIANT PATTERN RECOGNITION , 1998 .

[94]  J. Radon On the determination of functions from their integral values along certain manifolds , 1986, IEEE Transactions on Medical Imaging.

[95]  Qing Wang,et al.  Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  Nikolaos Canterakis,et al.  3D Zernike Moments and Zernike Affine Invariants for 3D Image Analysis and Recognition , 1999 .

[97]  W. A. Götz,et al.  A fast digital Radon transform--An efficient means for evaluating the Hough transform , 1995, Pattern Recognit..

[98]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[99]  Rajesh P. N. Rao,et al.  Bilinear Sparse Coding for Invariant Vision , 2005, Neural Computation.

[100]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[101]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[102]  Herbert Freeman,et al.  Determining the minimum-area encasing rectangle for an arbitrary closed curve , 1975, CACM.

[103]  Elisa H. Barney Smith,et al.  Statistical image differences, degradation features, and character distance metrics , 2003, Document Analysis and Recognition.

[104]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[105]  Harry Wechsler,et al.  Classification of binary document images into textual or nontextual data blocks using neural network models , 2005, Machine Vision and Applications.

[106]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[107]  Salvatore Tabbone,et al.  Histogram of radon transform. A useful descriptor for shape retrieval , 2008, 2008 19th International Conference on Pattern Recognition.

[108]  Dimitris E. Koulouriotis,et al.  Computation strategies of orthogonal image moments: A comparative study , 2010, Appl. Math. Comput..

[109]  Reinhard Klein,et al.  Shape retrieval using 3D Zernike descriptors , 2004, Comput. Aided Des..

[110]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[111]  Peter Grünwald,et al.  Invited review of the book Statistical and Inductive Inference by Minimum Message Length , 2006 .

[112]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[113]  Pascal Frossard,et al.  Low-rate and flexible image coding with redundant representations , 2006, IEEE Transactions on Image Processing.

[114]  Henry S. Baird,et al.  Document image defect models , 1995 .

[115]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[116]  Rama Chellappa,et al.  Appearance Modeling Using a Geometric Transform , 2009, IEEE Transactions on Image Processing.

[117]  Rangachar Kasturi,et al.  Improved Directional Morphological Operations for Separation of Characters from Maps/Graphics , 1997, GREC.

[118]  Gabriel Peyré,et al.  Sparse Modeling of Textures , 2009, Journal of Mathematical Imaging and Vision.

[119]  Salvatore Tabbone,et al.  Shape-Based Image Retrieval Using a New Descriptor Based on the Radon and Wavelet Transforms , 2010, 2010 20th International Conference on Pattern Recognition.

[120]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[121]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[122]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[123]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[124]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[125]  Paul L. Rosin,et al.  On the Orientability of Shapes , 2006, IEEE Transactions on Image Processing.

[126]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[127]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[128]  K. R. Ramakrishnan,et al.  Fast computation of Legendre and Zernike moments , 1995, Pattern Recognit..

[129]  C. Fefferman On the convergence of multiple Fourier series , 1971 .

[130]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[131]  James F. Boyce,et al.  The Radon transform and its application to shape parametrization in machine vision , 1987, Image Vis. Comput..

[132]  Wilfried Philips,et al.  A new fast algorithm for moment computation , 1993, Pattern Recognit..

[133]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[134]  Jean-Bernard Martens,et al.  Local orientation analysis in images by means of the Hermite transform , 1997, IEEE Trans. Image Process..

[135]  Bin Xiao,et al.  Image analysis by Bessel-Fourier moments , 2010, Pattern Recognit..

[136]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[137]  Miroslaw Pawlak,et al.  On the Accuracy of Zernike Moments for Image Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[138]  Eero P. Simoncelli,et al.  Multiscale Denoising of Photographic Images , 2009 .

[139]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[140]  C. Boncelet Image Noise Models , 2009 .

[141]  Ching Y. Suen,et al.  Text Segmentation from Complex Background Using Sparse Representations , 2007 .

[142]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[143]  Joseph W. Goodman,et al.  A mathematical analysis of the DCT coefficient distributions for images , 2000, IEEE Trans. Image Process..

[144]  Pascal Frossard,et al.  Semantic Coding by Supervised Dimensionality Reduction , 2008, IEEE Transactions on Multimedia.

[145]  J. Joseph,et al.  Fourier transforms , 2012 .

[146]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[147]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[148]  Roland T. Chin,et al.  On digital approximation of moment invariants , 1986, Computer Vision Graphics and Image Processing.

[149]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[150]  Hamid Soltanian-Zadeh,et al.  Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms , 2005, IEEE Transactions on Image Processing.

[151]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[152]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[153]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[154]  Rangachar Kasturi,et al.  Detection of Dimension Sets in Engineering Drawings , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[155]  Nanning Zheng,et al.  Skew Estimation of Document Images Using Bagging , 2010, IEEE Transactions on Image Processing.

[156]  Miroslaw Pawlak,et al.  Accurate Computation of Zernike Moments in Polar Coordinates , 2007, IEEE Transactions on Image Processing.

[157]  Ioannis Andreadis,et al.  An Efficient Technique for the Computation of ART , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[158]  Minh N. Do,et al.  The finite ridgelet transform for image representation , 2003, IEEE Trans. Image Process..

[159]  Violet F. Leavers,et al.  Use of the Radon transform as a method of extracting information about shape in two dimensions , 1992, Image Vis. Comput..

[160]  Nizar Bouguila,et al.  Unsupervised selection of a finite Dirichlet mixture model: an MML-based approach , 2006, IEEE Transactions on Knowledge and Data Engineering.

[161]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[162]  L D Cromwell,et al.  Filtering noise from images with wavelet transforms , 1991, Magnetic resonance in medicine.

[163]  J. M. Gloger,et al.  Use of the Hough transform to separate merged text/graphics in forms , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[164]  Zen Chen,et al.  A Zernike Moment Phase-Based Descriptor for Local Image Representation and Matching , 2010, IEEE Transactions on Image Processing.

[165]  Kjersti Engan,et al.  Multi-frame compression: theory and design , 2000, Signal Process..

[166]  Elisa H. Barney Smith,et al.  Edge noise in document images , 2009, AND '09.

[167]  Gonzalo R. Arce,et al.  Nonlinear Filtering for Image Analysis and Enhancement , 2009 .

[168]  Ronald R. Coifman,et al.  Brushlets: A Tool for Directional Image Analysis and Image Compression , 1997 .

[169]  Jerry D. Gibson,et al.  Distributions of the Two-Dimensional DCT Coefficients for Images , 1983, IEEE Trans. Commun..

[170]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[171]  Ioannis Andreadis,et al.  Accurate Calculation of Image Moments , 2007, IEEE Transactions on Image Processing.

[172]  Michael Elad,et al.  Applications of Sparse Representation and Compressive Sensing , 2010, Proc. IEEE.

[173]  Dov Dori,et al.  Sparse-pixel recognition of primitives in engineering drawings , 1993, Machine Vision and Applications.

[174]  Mehmet Ali Aktas Shape descriptors , 2009, Encyclopedia of Database Systems.

[175]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[176]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[177]  William H Press,et al.  Discrete Radon transform has an exact, fast inverse and generalizes to operations other than sums along lines , 2006, Proceedings of the National Academy of Sciences.

[178]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[179]  Ioannis Patras,et al.  Supervised dictionary learning for action localization , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[180]  Karl Skretting,et al.  Texture Classification Using Sparse Frame-Based Representations , 2006, EURASIP J. Adv. Signal Process..

[181]  Laurent Wendling,et al.  A new shape descriptor defined on the Radon transform , 2006, Comput. Vis. Image Underst..

[182]  Bin Xiao,et al.  Scaling and rotation invariant analysis approach to object recognition based on Radon and Fourier-Mellin transforms , 2007, Pattern Recognit..

[183]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[184]  Rangachar Kasturi,et al.  A Robust Algorithm for Text String Separation from Mixed Text/Graphics Images , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[185]  H H Arsenault,et al.  Rotation-invariant digital pattern recognition using circular harmonic expansion. , 1982, Applied optics.

[186]  Ernest Valveny,et al.  Report on the Second Symbol Recognition Contest , 2005, GREC.

[187]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[188]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[189]  Petros Maragos Chapter 13 – Morphological Filtering , 2009 .

[190]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[191]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[192]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[193]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[194]  Dov Dori,et al.  Vector-Based Segmentation of Text Connected to Graphics in Engineering Drawings , 1996, SSPR.

[195]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[196]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[197]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[198]  Ronald R. Coifman,et al.  A Framework for Discrete Integral Transformations I-The Pseudopolar Fourier Transform , 2008, SIAM J. Sci. Comput..

[199]  Gregory Beylkin,et al.  Discrete radon transform , 1987, IEEE Trans. Acoust. Speech Signal Process..

[200]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[201]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[202]  Y. Sheng,et al.  Orthogonal Fourier–Mellin moments for invariant pattern recognition , 1994 .

[203]  Elisa H. Barney Smith Modeling image degradations for improving OCR , 2008, 2008 16th European Signal Processing Conference.

[204]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[205]  Tong Lu,et al.  A New Text Detection Algorithm for Content-Oriented Line Drawing Image Retrieval , 2010, PCM.

[206]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[207]  Eric C. Kintner,et al.  On the Mathematical Properties of the Zernike Polynomials , 1976 .

[208]  Baoxin Li,et al.  Discriminative K-SVD for dictionary learning in face recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[209]  Glen P. Abousleman,et al.  Orthogonal Rotation-Invariant Moments for Digital Image Processing , 2008, IEEE Transactions on Image Processing.

[210]  F. B. Introduction to Bessel Functions , 1939, Nature.

[211]  Venkat Chandrasekaran,et al.  Representation and Compression of Multidimensional Piecewise Functions Using Surflets , 2009, IEEE Transactions on Information Theory.

[212]  Ziliang Ping,et al.  Image description with Chebyshev-Fourier moments. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[213]  Friedrich M. Wahl,et al.  Block segmentation and text extraction in mixed text/image documents , 1982, Comput. Graph. Image Process..

[214]  Davide Rocchesso,et al.  A Fast Mellin and Scale Transform , 2007, EURASIP J. Adv. Signal Process..

[215]  Behrooz Kamgar-Parsi,et al.  Evaluation of quantization error in computer vision , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[216]  Guojun Lu,et al.  Shape-based image retrieval using generic Fourier descriptor , 2002, Signal Process. Image Commun..

[217]  Alexander Kadyrov,et al.  The Trace Transform and Its Applications , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[218]  Xiaoming Huo,et al.  Beamlets and Multiscale Image Analysis , 2002 .

[219]  Bart Lamiroy,et al.  Text/Graphics Separation Revisited , 2002, Document Analysis Systems.

[220]  Richard Souvenir,et al.  Viewpoint Manifolds for Action Recognition , 2009, EURASIP J. Image Video Process..

[221]  J. Borwein,et al.  On the complexity of familiar functions and numbers , 1988 .

[222]  R. Mukundan,et al.  Moment Functions in Image Analysis: Theory and Applications , 1998 .

[223]  Ying Wang,et al.  Human Activity Recognition Based on R Transform , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[224]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[225]  Olivier Déforges,et al.  A robust and multiscale document image segmentation for block line/text line structures extraction , 1994, ICPR.

[226]  S. R. Deans Random and Abel Transforms , 2000 .

[227]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[228]  Vijay K. Madisetti,et al.  The fast discrete Radon transform. I. Theory , 1993, IEEE Trans. Image Process..

[229]  Jean-Bernard Martens,et al.  The Hermite transform-theory , 1990, IEEE Trans. Acoust. Speech Signal Process..

[230]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .