Joint Spectral Characteristics of Matrices: A Conic Programming Approach
暂无分享,去创建一个
[1] Yang Wang,et al. Bounded semigroups of matrices , 1992 .
[2] G. Gripenberg. COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .
[3] Y. Nesterov,et al. On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .
[4] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[5] Vincent D. Blondel,et al. Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..
[6] John L. Goldwasser,et al. The density of ones in Pascal's rhombus , 1999, Discret. Math..
[7] V. Kozyakin. Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .
[8] Vincent D. Blondel,et al. Polynomial-Time Computation of the Joint Spectral Radius for Some Sets of Nonnegative Matrices , 2009, SIAM J. Matrix Anal. Appl..
[9] J. Tsitsiklis,et al. The boundedness of all products of a pair of matrices is undecidable , 2000 .
[10] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[11] Ding-Xuan Zhou. The $p$-norm joint spectral radius for even integers , 1998 .
[12] R. Jungers. The Joint Spectral Radius: Theory and Applications , 2009 .
[13] V. Müller. On the joint spectral radius , 1997 .
[14] Vincent D. Blondel,et al. On the Complexity of Computing the Capacity of Codes That Avoid Forbidden Difference Patterns , 2006, IEEE Transactions on Information Theory.
[15] V. Protasov,et al. On the regularity of de Rham curves , 2004 .
[16] John N. Tsitsiklis,et al. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..
[17] Raphaël M. Jungers,et al. On the number of a-power-free words for 2 < a < 7/3 , 2008 .
[18] Vladimir Yu. Protasov. Refinement equations with nonnegative coefficients , 2000 .
[19] L. Gurvits. Stability of discrete linear inclusion , 1995 .
[20] Nicola Guglielmi,et al. Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..
[21] A. Jadbabaie,et al. Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.
[22] T. Andô,et al. Simultaneous Contractibility , 1998 .
[23] V. Protasov. Asymptotic behaviour of the partition function , 2000 .
[24] Julien Cassaigne,et al. Counting Overlap-Free Binary Words , 1993, STACS.
[25] Vincent D. Blondel,et al. Overlap-free words and spectra of matrices , 2007, Theor. Comput. Sci..
[26] S. Finch,et al. Odd Entries in Pascal's Trinomial Triangle , 2008, 0802.2654.
[27] M. Lothaire,et al. Applied Combinatorics on Words , 2005 .
[28] de Ng Dick Bruijn. On Mahler's partition problem , 1948 .
[29] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[30] N. Dyn,et al. Generalized Refinement Equations and Subdivision Processes , 1995 .
[31] J. Howie. COMBINATORICS ON WORDS (Encyclopedia of Mathematics and Its Applications, 17) , 1984 .
[32] Vincent D. Blondel,et al. Undecidable Problems for Probabilistic Automata of Fixed Dimension , 2003, Theory of Computing Systems.
[33] V. Protasov. The generalized joint spectral radius. A geometric approach , 1997 .
[34] Vincent D. Blondel,et al. Efficient algorithms for deciding the type of growth of products of integer matrices , 2006, ArXiv.
[35] Paul H. Siegel,et al. On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[36] K. Mahler,et al. On a Special Functional Equation , 1940 .
[37] Владимир Юрьевич Протасов,et al. Фрактальные кривые и всплески@@@Fractal curves and wavelets , 2006 .
[38] B. Reznick. Some Binary Partition Functions , 1990 .
[39] Владимир Юрьевич Протасов,et al. К задаче об асимптотике функции разбиения@@@On the Asymptotics of the Binary Partition Function , 2004 .