Joint Spectral Characteristics of Matrices: A Conic Programming Approach

We propose a new method to compute the joint spectral radius and the joint spectral subradius of a set of matrices. We first restrict our attention to matrices that leave a cone invariant. The accuracy of our algorithm, depending on geometric properties of the invariant cone, is estimated. We then extend our method to arbitrary sets of matrices by a lifting procedure, and we demonstrate the efficiency of the new algorithm by applying it to several problems in combinatorics, number theory, and discrete mathematics.

[1]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[2]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[3]  Y. Nesterov,et al.  On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[6]  John L. Goldwasser,et al.  The density of ones in Pascal's rhombus , 1999, Discret. Math..

[7]  V. Kozyakin Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .

[8]  Vincent D. Blondel,et al.  Polynomial-Time Computation of the Joint Spectral Radius for Some Sets of Nonnegative Matrices , 2009, SIAM J. Matrix Anal. Appl..

[9]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[11]  Ding-Xuan Zhou The $p$-norm joint spectral radius for even integers , 1998 .

[12]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[13]  V. Müller On the joint spectral radius , 1997 .

[14]  Vincent D. Blondel,et al.  On the Complexity of Computing the Capacity of Codes That Avoid Forbidden Difference Patterns , 2006, IEEE Transactions on Information Theory.

[15]  V. Protasov,et al.  On the regularity of de Rham curves , 2004 .

[16]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[17]  Raphaël M. Jungers,et al.  On the number of a-power-free words for 2 < a < 7/3 , 2008 .

[18]  Vladimir Yu. Protasov Refinement equations with nonnegative coefficients , 2000 .

[19]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[20]  Nicola Guglielmi,et al.  Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..

[21]  A. Jadbabaie,et al.  Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.

[22]  T. Andô,et al.  Simultaneous Contractibility , 1998 .

[23]  V. Protasov Asymptotic behaviour of the partition function , 2000 .

[24]  Julien Cassaigne,et al.  Counting Overlap-Free Binary Words , 1993, STACS.

[25]  Vincent D. Blondel,et al.  Overlap-free words and spectra of matrices , 2007, Theor. Comput. Sci..

[26]  S. Finch,et al.  Odd Entries in Pascal's Trinomial Triangle , 2008, 0802.2654.

[27]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[28]  de Ng Dick Bruijn On Mahler's partition problem , 1948 .

[29]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[30]  N. Dyn,et al.  Generalized Refinement Equations and Subdivision Processes , 1995 .

[31]  J. Howie COMBINATORICS ON WORDS (Encyclopedia of Mathematics and Its Applications, 17) , 1984 .

[32]  Vincent D. Blondel,et al.  Undecidable Problems for Probabilistic Automata of Fixed Dimension , 2003, Theory of Computing Systems.

[33]  V. Protasov The generalized joint spectral radius. A geometric approach , 1997 .

[34]  Vincent D. Blondel,et al.  Efficient algorithms for deciding the type of growth of products of integer matrices , 2006, ArXiv.

[35]  Paul H. Siegel,et al.  On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[36]  K. Mahler,et al.  On a Special Functional Equation , 1940 .

[37]  Владимир Юрьевич Протасов,et al.  Фрактальные кривые и всплески@@@Fractal curves and wavelets , 2006 .

[38]  B. Reznick Some Binary Partition Functions , 1990 .

[39]  Владимир Юрьевич Протасов,et al.  К задаче об асимптотике функции разбиения@@@On the Asymptotics of the Binary Partition Function , 2004 .