Disparity map refinement and 3D surface smoothing via Directed Anisotropic Diffusion

We propose a new binocular stereo algorithm and 3D reconstruction method from multiple disparity images. First, we present an accurate binocular stereo algorithm. In our algorithm, we use neither color segmentation nor plane fitting methods, which are common techniques among many algorithms nominated in the Middlebury ranking. These methods assume that the 3D world consists of a collection of planes and that each segment of a disparity map obeys a plane equation. We exclude these assumptions and introduce a Directed Anisotropic Diffusion technique for refining a disparity map. Second, we show a method to fill some holes in a distance map and smooth the reconstructed 3D surfaces by using another type of Anisotropic Diffusion technique. The evaluation results on the Middlebury datasets show that our stereo algorithm is competitive with other algorithms that adopt plane fitting methods. We present an experiment that shows the high accuracy of a reconstructed 3D model using our method, and the effectiveness and practicality of our proposed method in a real environment.

[1]  Vladimir Kolmogorov,et al.  Visual correspondence using energy minimization and mutual information , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  D. Nistér,et al.  Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Margrit Gelautz,et al.  Local stereo matching using geodesic support weights , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[6]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[7]  C. J. Taylor,et al.  Solving Stereo Matching Problems Using Interior Point Methods , 2008 .

[8]  Richard Szeliski,et al.  Stereo Matching with Nonlinear Diffusion , 1998, International Journal of Computer Vision.

[9]  Yuichi Ohta,et al.  Occlusion detectable stereo-occlusion patterns in camera matrix , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Li Xu,et al.  Stereo Matching: An Outlier Confidence Approach , 2008, ECCV.

[11]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[13]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[17]  Daniel P. Huttenlocher,et al.  Efficient Belief Propagation for Early Vision , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[18]  Ruigang Yang,et al.  Spatial-Depth Super Resolution for Range Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[20]  Pushmeet Kohli,et al.  Surface stereo with soft segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Carsten Rother,et al.  A stereo approach that handles the matting problem via image warping , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Uwe Franke,et al.  Improving Stereo Sub-Pixel Accuracy for Long Range Stereo , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[24]  Yuichi Taguchi,et al.  Stereo reconstruction with mixed pixels using adaptive over-segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Katsushi Ikeuchi,et al.  Hole Filling of a 3D Model by Flipping Signs of a Signed Distance Field in Adaptive Resolution , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[27]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  Ross T. Whitaker,et al.  Geometric surface smoothing via anisotropic diffusion of normals , 2002, IEEE Visualization, 2002. VIS 2002..

[29]  Frédéric Champagnat,et al.  On the choice of the goodness-to-fit term for multibaseline stereovision , 2004, BMVC.

[30]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Geoffrey Egnal,et al.  Detecting Binocular Half-Occlusions: Empirical Comparisons of Five Approaches , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[33]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[34]  Sébastien Roy,et al.  Geo-consistency for wide multi-camera stereo , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[35]  Andrew W. Fitzgibbon,et al.  Global stereo reconstruction under second order smoothness priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Zhi-Gang Zheng,et al.  A region based stereo matching algorithm using cooperative optimization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Martin Humenberger,et al.  A census-based stereo vision algorithm using modified Semi-Global Matching and plane fitting to improve matching quality , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[38]  Michael Goesele,et al.  Multi-View Stereo Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[39]  Sing Bing Kang,et al.  Stereo for Image-Based Rendering using Image Over-Segmentation , 2007, International Journal of Computer Vision.

[40]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).