Solving Bayesian risk optimization via nested stochastic gradient estimation

In this paper, we aim to solve Bayesian Risk Optimization (BRO), which is a recently proposed framework that formulates simulation optimization under input uncertainty. In order to efficiently solve the BRO problem, we derive nested stochastic gradient estimators and propose corresponding stochastic approximation algorithms. We show that our gradient estimators are asymptotically unbiased and consistent, and that the algorithms converge asymptotically. We demonstrate the empirical performance of the algorithms on a two-sided market model. Our estimators are of independent interest in extending the literature of stochastic gradient estimation to the case of nested risk functions.

[1]  Sanjay Mehrotra,et al.  Distributionally Robust Optimization: A Review , 2019, ArXiv.

[2]  Michael C. Fu,et al.  Conditional Monte Carlo Estimation of Quantile Sensitivities , 2009, Manag. Sci..

[3]  L. Jeff Hong,et al.  Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review , 2014, TOMC.

[4]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[5]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[6]  Barry L. Nelson,et al.  Advanced tutorial: Input uncertainty quantification , 2014, Proceedings of the Winter Simulation Conference 2014.

[7]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[8]  Carlo Meloni,et al.  Uncertainty Management in Simulation-Optimization of Complex Systems : Algorithms and Applications , 2015 .

[9]  Vinayak A. Rao,et al.  Risk-Sensitive Variational Bayes: Formulations and Bounds , 2019 .

[10]  R. Pasupathy,et al.  A Guide to Sample Average Approximation , 2015 .

[11]  Dimitris Bertsimas,et al.  Robust Optimization for Unconstrained Simulation-Based Problems , 2010, Oper. Res..

[12]  Michael C. Fu,et al.  A New Unbiased Stochastic Derivative Estimator for Discontinuous Sample Performances with Structural Parameters , 2018, Oper. Res..

[13]  Kenneth Lange,et al.  Numerical analysis for statisticians , 1999 .

[14]  Wei Xie,et al.  Simulation optimization when facing input uncertainty , 2015, 2015 Winter Simulation Conference (WSC).

[15]  Gabriel A. Wainer,et al.  ON THE ASYMPTOTIC ANALYSIS OF QUANTILE SENSITIVITY ESTIMATION BY MONTE CARLO SIMULATION , 2017 .

[16]  H. Kushner Stochastic approximation: a survey , 2010 .

[17]  L. Jeff Hong,et al.  Estimating Quantile Sensitivities , 2009, Oper. Res..

[18]  Enlu Zhou,et al.  Bayesian Optimization of Risk Measures , 2020, NeurIPS.

[19]  Di Wu,et al.  Simulation Optimization Under Input Model Uncertainty , 2017 .

[20]  Enlu Zhou,et al.  Risk Quantification in Stochastic Simulation under Input Uncertainty , 2015, ACM Trans. Model. Comput. Simul..

[21]  L. Jeff Hong,et al.  Kernel estimation for quantile sensitivities , 2007, 2007 Winter Simulation Conference.

[22]  Andreas Tolk Advances in Modeling and Simulation: Seminal Research from 50 Years of Winter Simulation Conferences , 2016 .

[23]  Russell R. Barton Input uncertainty in outout analysis , 2012, Winter Simulation Conference.

[24]  Di Wu,et al.  A Bayesian Risk Approach to Data-driven Stochastic Optimization: Formulations and Asymptotics , 2016, SIAM J. Optim..

[25]  L. Jeff Hong,et al.  Simulating Sensitivities of Conditional Value at Risk , 2009, Manag. Sci..

[26]  Shie Mannor,et al.  Optimizing the CVaR via Sampling , 2014, AAAI.

[27]  Sandeep Juneja,et al.  Nested Simulation in Portfolio Risk Measurement , 2008, Manag. Sci..

[28]  P. Glasserman,et al.  Estimating security price derivatives using simulation , 1996 .

[29]  Mark Broadie,et al.  Risk Estimation via Regression , 2015, Oper. Res..

[30]  Stephen J. Roberts,et al.  A tutorial on variational Bayesian inference , 2012, Artificial Intelligence Review.

[31]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[32]  M. Fu What you should know about simulation and derivatives , 2008 .

[33]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[34]  Yongqiang Wang,et al.  A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives , 2012, Oper. Res..

[35]  Szu Hui Ng,et al.  Gaussian process based optimization algorithms with input uncertainty , 2019, IISE Trans..

[36]  Jack P. C. Kleijnen,et al.  Regression and Kriging metamodels with their experimental designs in simulation: A review , 2017, Eur. J. Oper. Res..

[37]  Michael C. Fu,et al.  Chapter 19 Gradient Estimation , 2006, Simulation.

[38]  Peter I. Frazier,et al.  A Tutorial on Bayesian Optimization , 2018, ArXiv.

[39]  Jack P. C. Kleijnen,et al.  Metamodel-Based Robust Simulation-Optimization: An Overview , 2015 .

[40]  Michael C. Fu,et al.  Technical Note - On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis , 2015, Oper. Res..

[41]  Barry L. Nelson,et al.  A Confidence Interval Procedure for Expected Shortfall Risk Measurement via Two-Level Simulation , 2010, Oper. Res..