Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices

[1]  Qihao Zhang,et al.  Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects , 2019, Journal of Inorganic Materials.

[2]  陈立东,et al.  热电发电器件与应用技术: 现状、挑战与展望 , 2019 .

[3]  XLIII , 2018, The Princess Casamassima.

[4]  M. Kanatzidis,et al.  Excessively Doped PbTe with Ge-Induced Nanostructures Enables High-Efficiency Thermoelectric Modules , 2018, Joule.

[5]  Jun Mao,et al.  Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency , 2018, Nature Communications.

[6]  C. Spataru,et al.  Atomistic study of the electronic contact resistivity between the half-Heusler alloys (HfCoSb, HfZrCoSb, HfZrNiSn) and the metal Ag , 2018, Physical Review Materials.

[7]  Lianjun Wang,et al.  Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites , 2017 .

[8]  Jeffrey Long,et al.  Materials to Devices , 2017 .

[9]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[10]  Daniel Champier,et al.  Thermoelectric generators: A review of applications , 2017 .

[11]  Chen Ming,et al.  Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration , 2017 .

[12]  G. J. Snyder,et al.  Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device , 2017 .

[13]  Masaaki Kikuchi,et al.  Performance of Skutterudite-Based Modules , 2017, Journal of Electronic Materials.

[14]  K. Bartholomé,et al.  Reproducibility and Reliability in Manufacturing New High-Temperature Thermoelectric Modules , 2016 .

[15]  Jun-Wei Luo,et al.  Origin of the Distinct Diffusion Behaviors of Cu and Ag in Covalent and Ionic Semiconductors. , 2016, Physical review letters.

[16]  R. Saidur,et al.  A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery , 2016 .

[17]  Lidong Chen,et al.  Thermoelectric materials step up. , 2016, Nature materials.

[18]  T. Sakamoto,et al.  Investigation of Barrier-Layer Materials for Mg2Si/Ni Interfaces , 2016, Journal of Electronic Materials.

[19]  E. Bauer,et al.  Constitution of the systems {V,Nb,Ta}-Sb and physical properties of di-antimonides {V,Nb,Ta}Sb2 , 2015 .

[20]  E. Bauer,et al.  Ba5{V,Nb}12Sb19+x, novel variants of the Ba5Ti12Sb19+x-type: crystal structure and physical properties. , 2015, Physical chemistry chemical physics : PCCP.

[21]  G. J. Snyder,et al.  Brittle Failure Mechanism in Thermoelectric Skutterudite CoSb3 , 2015 .

[22]  Xinbing Zhao,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature Communications.

[23]  Y. Kamihara,et al.  Electrical/thermal transport and electronic structure of the binary cobalt pnictides CoPn2 (Pn = As and Sb) , 2015 .

[24]  Z. Ren,et al.  Current progress and future challenges in thermoelectric power generation: From materials to devices , 2015 .

[25]  Liangliang Li,et al.  Evaluation of Electroplated Co-P Film as Diffusion Barrier Between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material , 2015, Journal of Electronic Materials.

[26]  Xugui Xia,et al.  Microstructural evolution of the interfacial layer in the Ti–Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature , 2014 .

[27]  Kathy Lawrence,et al.  Looking back and moving forward. , 2014, Canadian family physician Medecin de famille canadien.

[28]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[29]  Masaaki Kikuchi,et al.  Thermoelectric Properties of Multifilled Skutterudites with La as the Main Filler , 2013, Journal of Electronic Materials.

[30]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[31]  Degang Zhao,et al.  Fabrication and reliability evaluation of CoSb3/W–Cu thermoelectric element , 2012 .

[32]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[33]  Lidong Chen,et al.  Fabrication of a CoSb3-based thermoelectric module , 2010 .

[34]  V. I. Dybkov Reaction diffusion and solid state chemical kinetics : handbook , 2010 .

[35]  Lidong Chen,et al.  Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging , 2009 .

[36]  Ji-Hui Yang,et al.  Automotive Applications of Thermoelectric Materials , 2009 .

[37]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[38]  H. Atkinson,et al.  Safe radioisotope thermoelectric generators and heat sources for space applications , 2008 .

[39]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[40]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[41]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[42]  Gary L. Bennett,et al.  Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator , 2006 .

[43]  E. E. Antonova,et al.  Finite elements for thermoelectric device analysis in ANSYS , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[44]  M. E. Brown,et al.  Application of the Arrhenius equation to solid state kinetics: can this be justified? , 2002 .

[45]  P. Blöchl,et al.  Projector augmented wave method:ab initio molecular dynamics with full wave functions , 2002, cond-mat/0201015.

[46]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[47]  Gao Min,et al.  Evaluation of thermoelectric modules for power generation , 1998 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[51]  G. Blaise,et al.  Studies of the first steps of thin film interdiffusion in the Al-Ni system , 1989 .

[52]  J. Corbett,et al.  Study of the crystal structures of ZrSb and β-ZrSb2 and of the bonding in the two ZrSb2 structures , 1988 .

[53]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[54]  JOSEPH V. Smith,et al.  Crystal structure and physical properties , 1974 .

[55]  U. R. Evans Mechanism of Oxidation and Tarnishing , 1947 .